Approximation Guarantees for Deterministic Maximization of Submodular Function with a Matroid Constraint

In the paper, we propose a deterministic approximation algorithm for maximizing a generalized monotone submodular function subject to a matroid constraint. The function is generalized through a curvature parameter \(c\in [0,1]\), and essentially reduces to a submodular function when \(c=1\). Our algorithm employs the deterministic approximation devised by Buchbinder et al. [3] for the \(c=1\) case of the problem as a building block, and eventually attains an approximation ratio of \(\frac{1+g_c(x)+\Delta \cdot \left[ 3+c-(2+c)x-(1+c)g_c(x)\right] }{2+c+(1+c)(1-x)}\) for the curvature parameter \(c\in [0,1]\) and for a calibrating parameter that is any \(x\in [0,1]\). For \(c=1\), the ratio attains 0.5008 by setting \(x=0.9\), coinciding with the renowned performance guarantee of the problem. Moreover, when the submodular set function degenerates to a linear function, our generalized algorithm always produces optimum solutions and thus achieves an approximation ratio 1.

[1]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[2]  Jan Vondrák,et al.  Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[3]  Rishabh K. Iyer,et al.  Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions , 2013, NIPS.

[4]  Yuval Filmus,et al.  Monotone Submodular Maximization over a Matroid via Non-Oblivious Local Search , 2012, SIAM J. Comput..

[5]  Jan Vondr Submodularity and Curvature: The Optimal Algorithm , 2010 .

[6]  Gérard Cornuéjols,et al.  Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem , 1984, Discret. Appl. Math..

[7]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[8]  Jan Vondrák,et al.  Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature , 2017, Math. Oper. Res..

[9]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[10]  Joseph Naor,et al.  Submodular Maximization with Cardinality Constraints , 2014, SODA.

[11]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[12]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[13]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[14]  Maxim Sviridenko,et al.  Pipage Rounding: A New Method of Constructing Algorithms with Proven Performance Guarantee , 2004, J. Comb. Optim..

[15]  Niv Buchbinder,et al.  Deterministic (1/2 + ε)-Approximation for Submodular Maximization over a Matroid , 2019, SODA.

[16]  Rishabh K. Iyer,et al.  Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints , 2013, NIPS.

[17]  Eric Balkanski,et al.  The Power of Optimization from Samples , 2016, NIPS.