Design Optimization of Waveguide Filters Using Continuum Design Sensitivity Analysis

This paper presents a new methodology for design optimization of dielectric waveguide filters based on the continuum design sensitivity analysis in conjunction with standard electromagnetic analysis codes. To achieve this, first, an analytical sensitivity formula in the frequency domain is systematically derived by exploiting the augmented Lagrangian method, material derivative concept and adjoint variable method. Then unified program architecture integrating several engineering software packages into a design tool is proposed for optimum design of high-frequency devices. A 3-D dielectric resonator used in waveguide filters has been tested to prove the validity of the proposed method.