Two-Dimensional Inversion of Full Waveforms Using Simulated Annealing

AbstractThe paper presents a technique to invert two-dimensional (2D) full wavefields using simulated annealing and a finite-difference solution of the 2D elastic wave equation in the time-distance domain. The algorithm generates all possible wave types (body waves, surface waves, etc.) to simulate complex seismic wavefields and for comparison with observed data. Model runs with both synthetic and actual experimental data sets illustrate the capability of the inversion technique. The results from synthetic data demonstrate the potential of characterizing both low- and high-velocity layers in laterally inhomogeneous profiles, and the inversion results from actual data are consistent with the crosshole, standard penetration test N-value, and material log results. Based on the cases presented, the coupling of global optimization with full waveforms is computationally practical; the results presented herein required less than 1 day of computer time on a standard laptop computer.

[1]  Giovanni Cascante,et al.  Effects of underground cavities on Rayleigh waves-Field and numerical experiments , 2007 .

[2]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[3]  W R Hudson,et al.  USE OF SPECTRAL ANALYSIS OF SURFACE WAVES METHOD FOR DETERMINATION OF MODULI AND THICKNESSES OF PAVEMENT SYSTEMS. , 1983 .

[4]  L. Ingber Very fast simulated re-annealing , 1989 .

[5]  Dennis R. Hiltunen,et al.  Systematic Protocol for SASW Inversion , 2001 .

[6]  Mrinal K. Sen,et al.  Nonlinear one-dimensional seismic waveform inversion using simulated annealing , 1991 .

[7]  Richard D. Miller,et al.  Multichannel analysis of surface waves , 1999 .

[8]  Colorado Colorado,et al.  AMERICAN SOCIETY OF CIVIL ENGINEERS , 2010 .

[9]  John N. Louie,et al.  A generalized simulated-annealing optimization for inversion of first-arrival times , 1994 .

[10]  Ron List,et al.  Full-waveform P-SV reflectivity inversion of surface waves for shallow engineering applications , 2003 .

[11]  F. Hu Absorbing Boundary Conditions , 2004 .

[12]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[13]  Glenn J. Rix,et al.  Mitigation of Near-Field Effects for Seismic Surface Wave Velocity Estimation with Cylindrical Beamformers , 2005 .

[14]  P. Kaikkonen,et al.  Two-dimensional non-linear inversion of VLF-R data using simulated annealing , 1998 .

[15]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[16]  René-Édouard Plessix,et al.  Introduction: Towards a full waveform inversion , 2008 .

[17]  Carlos Calderón-Macías,et al.  Inversion of Seismic Surface Wave Data to Resolve Complex Profiles , 2007 .

[18]  B. Luke,et al.  Improved parameterization to invert Rayleigh-wave data for shallow profiles containing stiff inclusions , 2007 .

[19]  Michele Pipan,et al.  Rayleigh wave dispersion curve inversion via genetic algorithms and Marginal Posterior Probability Density estimation , 2007 .

[20]  John N. Louie,et al.  Faster, Better: Shear-Wave Velocity to 100 Meters Depth From Refraction Microtremor Arrays , 2001 .

[21]  Michele Cercato,et al.  Global surface wave inversion with model constraints ‡ , 2011 .

[22]  Klaus Mosegaard,et al.  MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .

[23]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[24]  Dennis R. Hiltunen,et al.  An Assessment of Surface Wave Techniques at the Texas A&M National Geotechnical Experimentation Site , 2011 .