Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves

In this paper we address several theoretical questions related to the numerical approximation of the scattering of acoustic waves in two or three dimensions by penetrable non-homogeneous obstacles using convolution quadrature (CQ) techniques for the time variable and coupled boundary element method/finite element method for the space variable. The applicability of CQ to waves requires polynomial type bounds for operators related to the operator Δ − s2 in the right half complex plane. We propose a new systematic way of dealing with this problem, both at the continuous and semidiscrete-in-space cases. We apply the technique to three different situations: scattering by a group of sound-soft and -hard obstacles, by homogeneous and non-homogeneous obstacles.

[1]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[2]  Rolf Schneider,et al.  Time discretization of parabolic boundary integral equations , 1991 .

[3]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[4]  Dugald B. Duncan,et al.  Stability and Convergence of Collocation Schemes for Retarded Potential Integral Equations , 2004, SIAM J. Numer. Anal..

[5]  Martin Costabel,et al.  Time‐Dependent Problems with the Boundary Integral Equation Method , 2004 .

[6]  Francisco Javier Sayas González,et al.  A distributional version of Kirchhoff¿s formula , 2009 .

[7]  Agnès Pujols,et al.  Couplage éléments finis-potentiels retardés pour la diffraction électromagnétique par un obstacle hétérogène , 2001, Numerische Mathematik.

[8]  Stefan A. Sauter,et al.  Numerical Treatment of Retarded Boundary Integral Equations by Sparse Panel Clustering (extended version) , 2006 .

[9]  Mari Paz Calvo,et al.  Runge–Kutta convolution quadrature methods for well-posed equations with memory , 2007, Numerische Mathematik.

[10]  Dongwoo Sheen,et al.  A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature , 2003 .

[11]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .

[12]  Alexander Ostermann,et al.  RUNGE-KUTTA METHODS FOR PARABOLIC EQUATIONS AND CONVOLUTION QUADRATURE , 1993 .

[13]  Carsten Carstensen,et al.  Coupling of Nonconforming Finite Elements and Boundary Elements I: A Priori Estimates , 1999, Computing.

[14]  T. Ha-Duong,et al.  On Retarded Potential Boundary Integral Equations and their Discretisation , 2003 .

[15]  C. Lubich Convolution quadrature and discretized operational calculus. II , 1988 .

[16]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[17]  T. Ha-Duong,et al.  A Galerkin BEM for transient acoustic scattering by an absorbing obstacle , 2003 .

[18]  P. Monk,et al.  A Finite Difference Delay Modeling Approach to the Discretization of the Time Domain Integral Equations of Electromagnetics , 2008, IEEE Transactions on Antennas and Propagation.

[19]  Rainer Kress,et al.  Rothe's Method for the Heat Equation and Boundary Integral Equations , 1997 .

[20]  Eliane Bécache,et al.  A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem , 1994 .

[21]  Wolfgang Hackbusch,et al.  Sparse Convolution Quadrature for Time Domain Boundary Integral Formulations of the Wave Equation by Cutoff and Panel-Clustering , 2007 .

[22]  C. Lubich,et al.  On the multistep time discretization of linear\newline initial-boundary value problems and their boundary integral equations , 1994 .

[23]  C. Lubich Convolution Quadrature Revisited , 2004 .

[24]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[25]  Martin Costabel,et al.  Symmetric Methods for the Coupling of Finite Elements and Boundary Elements (Invited contribution) , 1987 .

[26]  Kazuaki Taira,et al.  A Priori Estimates , 2020, Boundary Value Problems and Markov Processes.

[27]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle pour le calcul de la diffraction d'une onde acoustique par une surface rigide , 1986 .

[28]  M. Schanz Wave Propagation in Viscoelastic and Poroelastic Continua , 2001 .

[29]  Francisco Javier Sayas González,et al.  Symmetric boundary integral formulations for Helmhotz transmission problem , 2009 .

[30]  Francisco-Javier Sayas,et al.  Numerical solution of a heat diffusion problem by boundary element methods using the Laplace transform , 2005, Numerische Mathematik.

[31]  E. Hairer,et al.  Stiff and differential-algebraic problems , 1991 .

[32]  Francisco Javier Sayas González Direct boundary element method with discretization of all integral operators , 2006 .

[33]  Christian Lubich,et al.  Fast and Oblivious Convolution Quadrature , 2006, SIAM J. Sci. Comput..

[34]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[35]  Martin Schanz,et al.  Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach , 2001 .

[36]  E. Martensen,et al.  The Rothe method for the wave equation in several space dimensions , 1979, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[37]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[38]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[39]  Eduardo Cuesta,et al.  Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..

[40]  Olaf Steinbach Fast solution techniques for the symmetric boundary element method in linear elasticity , 1998 .

[41]  Martin Costabel,et al.  A direct boundary integral equation method for transmission problems , 1985 .

[42]  L. Schwartz Méthodes mathématiques pour les sciences physiques , 1961 .