Odd- and even-denominator fractional quantum Hall states in monolayer WSe2

[1]  Lei Wang,et al.  Even-denominator fractional quantum Hall state in bilayer graphene , 2022, Acta Physica Sinica.

[2]  L. Balicas,et al.  Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. , 2019, Nano letters.

[3]  M. Lukin,et al.  Transport and photoluminescent characterization of high-quality single layer WSe 2 devices , 2019 .

[4]  T. Taniguchi,et al.  High-Quality Magnetotransport in Graphene Using the Edge-Free Corbino Geometry. , 2018, Physical review letters.

[5]  T. Ihn,et al.  Interactions and Magnetotransport through Spin-Valley Coupled Landau Levels in Monolayer MoS_{2}. , 2018, Physical review letters.

[6]  S. Banerjee,et al.  Large effective mass and interaction-enhanced Zeeman splitting of K -valley electrons in MoSe 2 , 2018, 1804.10104.

[7]  T. Taniguchi,et al.  Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene , 2017, Nature Physics.

[8]  Kenji Watanabe,et al.  Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2 , 2017, Nature Materials.

[9]  T. Taniguchi,et al.  Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level , 2016, Nature.

[10]  G. Sreejith,et al.  Surprising robustness of particle-hole symmetry for composite-fermion liquids , 2017, 1707.08830.

[11]  T. Taniguchi,et al.  Even-denominator fractional quantum Hall states in bilayer graphene , 2017, Science.

[12]  S. Banerjee,et al.  Density-Dependent Quantum Hall States and Zeeman Splitting in Monolayer and Bilayer WSe_{2}. , 2017, Physical review letters.

[13]  J. Shan,et al.  Valley- and spin-polarized Landau levels in monolayer WSe2. , 2017, Nature nanotechnology.

[14]  M. Kawasaki,et al.  Even-denominator fractional quantum Hall physics in ZnO , 2015, Nature Physics.

[15]  D. Son Is the Composite Fermion a Dirac Particle , 2015, 1502.03446.

[16]  K. West,et al.  Anomalous Gap Reversal of the $3+1/3$ and $3+1/5$ Fractional Quantum Hall States , 2014, 1410.6571.

[17]  A. Morpurgo,et al.  Observation of even denominator fractional quantum Hall effect in suspended bilayer graphene. , 2013, Nano letters.

[18]  M. Goerbig,et al.  Spin- and valley-dependent magneto-optical properties of MoS 2 , 2013, 1307.2884.

[19]  Fan Zhang,et al.  Unconventional quantum Hall effect and tunable spin hall effect in Dirac materials: application to an isolated MoS2 trilayer. , 2013, Physical review letters.

[20]  Amir Yacoby,et al.  Unconventional Sequence of Fractional Quantum Hall States in Suspended Graphene , 2012, Science.

[21]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[22]  R. Bhatt,et al.  Tunable interactions and phase transitions in Dirac materials in a magnetic field , 2011, 1108.1339.

[23]  T. Chakraborty,et al.  Stable Pfaffian state in bilayer graphene. , 2011, Physical review letters.

[24]  K. L. Shepard,et al.  Multicomponent fractional quantum Hall effect in graphene , 2010, 1010.1179.

[25]  M. Goerbig,et al.  Electronic properties of graphene in a strong magnetic field , 2010, 1004.3396.

[26]  M. R. Peterson,et al.  Orbital Landau level dependence of the fractional quantum Hall effect in quasi-two-dimensional electron layers: Finite-thickness effects , 2008, 0801.4819.

[27]  M. Fisher,et al.  Particle-hole symmetry and the nu=5/2 quantum Hall state. , 2007, Physical review letters.

[28]  B. Rosenow,et al.  Particle-hole symmetry and the Pfaffian state. , 2007, Physical review letters.

[29]  J. Jain Composite Fermions: Index , 2007 .

[30]  K. West,et al.  Competition between a fractional quantum hall liquid and bubble and Wigner crystal phases in the third Landau level. , 2004, Physical review letters.

[31]  C. M. Smith,et al.  Competition between quantum-liquid and electron-solid phases in intermediate Landau levels , 2003, cond-mat/0310383.

[32]  C. M. Smith,et al.  Scaling approach to the phase diagram of quantum Hall systems , 2003, cond-mat/0301329.

[33]  K. West,et al.  Exact Quantization of the Even-Denominator Fractional Quantum Hall State at ν = 5 / 2 Landau Level Filling Factor , 1999, cond-mat/9907356.

[34]  S. Sondhi,et al.  Two point-contact interferometer for quantum Hall systems , 1996, cond-mat/9607195.

[35]  West,et al.  Compressibility of the two-dimensional electron gas: Measurements of the zero-field exchange energy and fractional quantum Hall gap. , 1994, Physical review. B, Condensed matter.

[36]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[37]  S. Girvin,et al.  The Quantum Hall Effect , 1987 .

[38]  Tsui,et al.  Observation of an even-denominator quantum number in the fractional quantum Hall effect. , 1987, Physical review letters.

[39]  B. Halperin Theory of the quantized Hall conductance , 1983 .

[40]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .