Defect Tolerance in Nanotechnology Switches Using a Greedy Reconfiguration Algorithm

Lithography based IC fabrication is rapidly approaching its limit in terms of feature size. The current alternative is nanotechnology based fabrication, which relies on self-assembly of nanotubes or nanowires. Such a process is subject to a high defect rate, which can be tolerated using carefully crafted defect tolerance techniques. This paper presents an algorithm for reconfiguration-based defect tolerance in nanotechnology switches. The algorithm offers an average switch density improvement of 50% to 100% to most recently published techniques

[1]  Mehdi Baradaran Tahoori,et al.  A mapping algorithm for defect-tolerance of reconfigurable nano-architectures , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[2]  Fabrizio Lombardi,et al.  On the defect tolerance of nano-scale two-dimensional crossbars , 2004 .

[3]  Shimon Kogan,et al.  Hardness of approximation of the Balanced Complete Bipartite Subgraph problem , 2004 .

[4]  Michael J. Wilson,et al.  Nanowire-based sublithographic programmable logic arrays , 2004, FPGA '04.

[5]  Cees Dekker,et al.  Logic circuits with carbon nanotubes , 2002 .

[6]  Mihalis Yannakakis,et al.  Node-Deletion Problems on Bipartite Graphs , 1981, SIAM J. Comput..

[7]  Dorit S. Hochbaum,et al.  Approximating Clique and Biclique Problems , 1998, J. Algorithms.

[8]  Milind Dawande,et al.  On Bipartite and Multipartite Clique Problems , 2001, J. Algorithms.

[9]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[10]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[11]  András Frank,et al.  On Kuhn's Hungarian Method—A tribute from Hungary , 2005 .

[12]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[13]  Mircea R. Stan,et al.  Design and analysis of crossbar circuits for molecular nanoelectronics , 2002, Proceedings of the 2nd IEEE Conference on Nanotechnology.

[14]  R. Stanley Williams,et al.  CMOS-like logic in defective, nanoscale crossbars , 2004 .

[15]  Seth Copen Goldstein,et al.  NanoFabrics: spatial computing using molecular electronics , 2001, Proceedings 28th Annual International Symposium on Computer Architecture.

[16]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[17]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[18]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[19]  André DeHon,et al.  Array-based architecture for FET-based, nanoscale electronics , 2003 .

[20]  André DeHon,et al.  A greedy algorithm for tolerating defective crosspoints in nanoPLA design , 2004, Proceedings. 2004 IEEE International Conference on Field- Programmable Technology (IEEE Cat. No.04EX921).