Optimal Extended Jacobian Inverse Kinematics Algorithm with Application to Attitude Control of Robotic Manipulators

We study the approximation problem of Jacobian inverse kinematics algorithms for robotic manipulators. A novel variational formulation of the problem is explored in the context of the optimal approximation of the Jacobian pseudo inverse algorithm by the extended Jacobian algorithm for the coordinate-free definition of the manipulator’s kinematics. The attitude control problem of a robotic manipulator is solved as an illustration of the approach.

[1]  Roger W. Brockett,et al.  Robotic manipulators and the product of exponentials formula , 1984 .

[2]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[3]  J. Wen,et al.  The attitude control problem , 1991 .

[4]  T. Shamir,et al.  Repeatability of redundant manipulators: mathematical solution of the problem , 1988 .

[5]  Janusz Jakubiak,et al.  Motion planning in velocity affine mechanical systems , 2010, Int. J. Control.

[6]  Krzysztof Tchon,et al.  Approximation of Jacobian inverse kinematics algorithms , 2009, Int. J. Appl. Math. Comput. Sci..

[7]  Charles A. Klein,et al.  Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Paul A. Fuhrmann,et al.  Mathematical Theory of Networks and Systems , 1984 .

[9]  P. Crouch,et al.  Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models , 1984 .

[10]  Krzysztof Tchon,et al.  Repeatable approximation of the Jacobian pseudo-inverse , 2009, Syst. Control. Lett..

[11]  A. A. Maciejewski,et al.  Repeatable generalized inverse control strategies for kinematically redundant manipulators , 1993, IEEE Trans. Autom. Control..

[12]  Rita Cunha,et al.  Output-feedback control for stabilization on SE(3) , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[13]  K. Rektorys Variational Methods in Mathematics, Science and Engineering , 1977 .

[14]  J. M. Selig Geometric Fundamentals of Robotics , 2004, Monographs in Computer Science.

[15]  John Baillieul,et al.  Kinematic programming alternatives for redundant manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[16]  Krzysztof Tchon Optimal Extended Jacobian Inverse Kinematics Algorithms for Robotic Manipulators , 2008, IEEE Transactions on Robotics.

[17]  Anthony A. Maciejewski,et al.  Nearest optimal repeatable control strategies for kinematically redundant manipulators , 1992, IEEE Trans. Robotics Autom..