Relating localized nanoparticle resonances to an associated antenna problem

On an empirical basis, we indicate the possibility of conceptually unifying the description of resonances existing in some of the analytically studied metallic nanoparticles and optical nanowire antennas. To this end the nanoantenna is treated as a Fabry-P\'erot-like resonator with arbitrary seminanoparticles forming the terminations. We show that the frequencies of the quasistatic dipolar resonances of the considered nanoparticles coincide with those where the round-trip phase of the complex reflection coefficient of the fundamental propagating plasmon polariton mode at the wire terminations amounts to $2\ensuremath{\pi}$. The lowest order Fabry-P\'erot resonance of the optical wire antenna occurs therefore even for a negligible wire length.

[1]  Eleftherios N. Economou,et al.  Surface polaritons in a circularly cylindrical interface: Surface plasmons , 1974 .

[2]  S. J. Al-Bader,et al.  Diffraction of Surface Plasmon Modes on Abruptly Terminated Metallic Nanowires , 2007 .

[3]  Nano plasmon polariton modes of a wedge cross section metal waveguide. , 2006, Optics express.

[4]  Rodney Loudon,et al.  Surface polaritons in cylindrical optical fibers , 1991 .

[5]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[6]  河田 聡,et al.  Near-field optics and surface plasmon polaritons , 2001 .

[7]  Mark L Brongersma,et al.  Spectral properties of plasmonic resonator antennas. , 2008, Optics express.

[8]  P. Barber Absorption and scattering of light by small particles , 1984 .

[9]  D. Fredkin,et al.  Resonant behavior of dielectric objects (electrostatic resonances). , 2003, Physical review letters.

[10]  J. Hopfield a Quantum-Mechanical Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. , 1958 .

[11]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[12]  Journal of the Optical Society of America , 1950, Nature.

[13]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[14]  S. Al-bader,et al.  Optical fiber hybrid-surface plasmon polaritons , 1993 .

[15]  J. C. Ashley,et al.  Dispersion relations for non-radiative surface plasmons on cylinders☆ , 1974 .

[16]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[17]  Feng Wang,et al.  General properties of local plasmons in metal nanostructures. , 2006, Physical review letters.

[18]  D. E. Chang,et al.  Strong coupling of single emitters to surface plasmons , 2006, quant-ph/0603221.

[19]  Javier Aizpurua,et al.  Mapping the plasmon resonances of metallic nanoantennas. , 2008, Nano letters.

[20]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[21]  Yingzhou Huang,et al.  Correlation between incident and emission polarization in nanowire surface plasmon waveguides. , 2010, Nano letters.

[22]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[23]  Sergey I. Bozhevolnyi,et al.  Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration , 2008 .

[24]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[25]  P. Lalanne,et al.  A microscopic view of the electromagnetic properties of sub-λ metallic surfaces , 2009 .

[26]  P. Lalanne,et al.  Microscopic theory of the extraordinary optical transmission , 2008, Nature.

[27]  Reuven Gordon,et al.  Reflection of cylindrical surface waves. , 2009, Optics express.

[28]  G. Stewart Optical Waveguide Theory , 1983, Handbook of Laser Technology and Applications.

[29]  Carsten Rockstuhl,et al.  Fabry-Pérot resonances in one-dimensional plasmonic nanostructures. , 2009, Nano letters.