Fuzzy-Basis-Function-Network-Based $H_\infty$ Tracking Control for Robotic Manipulators Using Only Position Feedback

This paper presents an H infin fuzzy output-feedback tracking-control scheme for robotic manipulators without measuring joint velocities. The developed controller and observer are based on a fuzzy basis function network (FBFN), which is employed to approximate nonlinear functions in the dynamics of controller and observer. The FBFN-based observer that estimates joint velocities can remove the needs of full-state measurements. According to the inevitable approximation errors and external disturbances, an H infin auxiliary control signal is used to suppress the effects of the uncertainties. Moreover, all parameters of the fuzzy basis functions (FBFs) and FBF-to-output weights can be tuned online. The proposed controller requires no prior knowledge about the dynamics of the robot manipulator and no offline learning phase. Finally, comparative simulations on a three-link robot manipulator are provided to illustrate the tracking performance of the H infin FBFN-based output-feedback control approach.

[1]  Byung Kook Yoo,et al.  Adaptive control of robot manipulator using fuzzy compensator , 2000, IEEE Trans. Fuzzy Syst..

[2]  Frank L. Lewis,et al.  Neural network output feedback control of robot manipulators , 1999, IEEE Trans. Robotics Autom..

[3]  J. P. Hwang,et al.  Robust tracking control of an electrically driven robot: adaptive fuzzy logic approach , 2006, IEEE Transactions on Fuzzy Systems.

[4]  Sheng-De Wang,et al.  An adaptive H/sup /spl infin// controller design for bank-to-turn missiles using ridge Gaussian neural networks , 2004, IEEE Transactions on Neural Networks.

[5]  Y. Shrivastava,et al.  Adaptive H∞ neural network tracking controller for electrically driven manipulators , 1998 .

[6]  S. Nicosia,et al.  Robot control by using only joint position measurements , 1990 .

[7]  Mansour Eslami,et al.  Robust adaptive controller designs for robot manipulator systems , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[8]  Sheng-De Wang,et al.  Adaptive tuning of the fuzzy controller for robots , 2000, Fuzzy Sets Syst..

[9]  C.-K. Lin,et al.  Nonsingular Terminal Sliding Mode Control of Robot Manipulators Using Fuzzy Wavelet Networks , 2006, IEEE Transactions on Fuzzy Systems.

[10]  Li-Xin Wang,et al.  Stable adaptive fuzzy control of nonlinear systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[11]  Wei-Song Lin,et al.  Robust fuzzy model-following control of robot manipulators , 2000, IEEE Trans. Fuzzy Syst..

[12]  C.-K. Lin,et al.  Adaptive tracking controller design for robotic systems using Gaussian wavelet networks , 2002 .

[13]  H. Nijmeijer,et al.  Robust control of robots via linear estimated state feedback , 1994, IEEE Trans. Autom. Control..

[14]  Euntai Kim,et al.  Output feedback tracking control of robot manipulators with model uncertainty via adaptive fuzzy logic , 2004, IEEE Trans. Fuzzy Syst..

[15]  Chung-Shi Tseng,et al.  A Novel Approach to $H_{\bm \infty}$ Decentralized Fuzzy-Observer-Based Fuzzy Control Design for Nonlinear Interconnected Systems , 2008, IEEE Transactions on Fuzzy Systems.

[16]  Sung Hyun Kim,et al.  Observer-Based Relaxed ${{\cal H}}_{\infty }$ Control for Fuzzy Systems Using a Multiple Lyapunov Function , 2009, IEEE Transactions on Fuzzy Systems.

[17]  Tong Heng Lee,et al.  Design of Observer-Based $H_\infty$ Control for Fuzzy Time-Delay Systems , 2008, IEEE Transactions on Fuzzy Systems.

[18]  Antonio T. Alexandridis,et al.  Adaptive neural motion control of n-link robot manipulators subject to unknown disturbances and stochastic perturbations , 2006 .

[19]  Romeo Ortega,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[20]  Y.-C. Chang Neural network-based tracking control for robotic systems using only position feedback , 2001 .

[21]  Bor-Sen Chen,et al.  Intelligent Robust Tracking Controls for Holonomic and Nonholonomic Mechanical Systems Using Only Position Measurements , 2005, IEEE Trans. Fuzzy Syst..

[22]  Frank L. Lewis,et al.  Intelligent optimal control of robotic manipulators using neural networks , 2000, Autom..

[23]  Qing-Long Han,et al.  Robust $H_{\infty}$ Control for Uncertain Takagi–Sugeno Fuzzy Systems With Interval Time-Varying Delay , 2007, IEEE Transactions on Fuzzy Systems.

[24]  C. C. Wit,et al.  Robot control via robust estimated state feedback , 1991 .

[25]  Frank L. Lewis,et al.  Multilayer neural-net robot controller with guaranteed tracking performance , 1996, IEEE Trans. Neural Networks.