Phylogenetic distance and structural diversity directing a reclassification of glycopeptide antibiotics

Antibiotics have been an essential part of modern medicine since their initial discovery. The continuous search for new antibiotic candidates remains a necessity given the increasing emergence of resistance to antimicrobial compounds among pathogens. The glycopeptide antibiotics (GPAs) represent an important group of last resort antibiotics which inhibit bacterial growth through non-covalent binding to the cell wall precursor lipid II. The so far reported GPAs exhibit an enormous diversity in the biosynthetic gene clusters that encode their production, which is in turn reflected in the variety of their structures. GPAs are typically composed of seven amino acids, which are highly crosslinked and decorated with a variable collection of sugar moieties as well as other modifications. Based on their structural characteristics, they have been classified into four main types. More recently, atypical GPAs have been identified that differ from type I-IV GPAs in both their structure and function and have consequently been classified as type V GPAs. Given these differences, we studied the phylogeny of all gene sequences related to the biosynthesis of the GPAs and observed a clear evolutionary diversification between the lipid II binding GPA classes and the so-called type V GPAs. Here we suggest the adoption of a phylogeny-driven reclassification and a separation of classical lipid II binding GPAs from type V GPAs, which we propose to identify instead as glycopeptide- related peptides (GRPs).

[1]  J. Banfield,et al.  Ancient origin and constrained evolution of the division and cell wall gene cluster in Bacteria , 2022, Nature Microbiology.

[2]  E. Stegmann,et al.  Beyond vancomycin: recent advances in the modification, reengineering, production and discovery of improved glycopeptide antibiotics to tackle multidrug-resistant bacteria. , 2022, Current opinion in biotechnology.

[3]  P. Innocenti,et al.  Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014–2022 , 2022, ACS infectious diseases.

[4]  G. Wright,et al.  Phylogeny-Informed Synthetic Biology Reveals Unprecedented Structural Novelty in Type V Glycopeptide Antibiotics , 2022, ACS central science.

[5]  Shrikant S. Mantri,et al.  Metagenomic Sequencing of Multiple Soil Horizons and Sites in Close Vicinity Revealed Novel Secondary Metabolite Diversity , 2021, mSystems.

[6]  Shrikant S. Mantri,et al.  The confluence of big data and evolutionary genome mining for the discovery of natural products. , 2021, Natural product reports.

[7]  Alexander M. Kloosterman,et al.  antiSMASH 6.0: improving cluster detection and comparison capabilities , 2021, Nucleic Acids Res..

[8]  G. Challis,et al.  Structures of a non-ribosomal peptide synthetase condensation domain suggest the basis of substrate selectivity , 2021, Nature Communications.

[9]  J. Kalinowski,et al.  Genomic-Led Discovery of a Novel Glycopeptide Antibiotic by Nonomuraea coxensis DSM 45129 , 2021, ACS chemical biology.

[10]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[11]  Natalia N. Ivanova,et al.  Author Correction: A genomic catalog of Earth’s microbiomes , 2021, Nature biotechnology.

[12]  E. Dittmann,et al.  The Landscape of Recombination Events That Create Nonribosomal Peptide Diversity , 2021, Molecular biology and evolution.

[13]  Gerard D. Wright,et al.  GPAHex-A synthetic biology platform for Type IV–V glycopeptide antibiotic production and discovery , 2020, Nature Communications.

[14]  H. Bode,et al.  Artificial Splitting of a Non‐Ribosomal Peptide Synthetase by Inserting Natural Docking Domains , 2020, Angewandte Chemie.

[15]  R. Alduina,et al.  A Two-Component regulatory system with opposite effects on glycopeptide antibiotic biosynthesis and resistance , 2020, Scientific Reports.

[16]  Y. Brun,et al.  Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling , 2020, Nature.

[17]  K. Nealson,et al.  A Genus Definition for Bacteria and Archaea Based on a Standard Genome Relatedness Index , 2020, mBio.

[18]  J. Banfield,et al.  Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type , 2019, mBio.

[19]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[20]  M. Cryle,et al.  A proof-reading mechanism for non-proteinogenic amino acid incorporation into glycopeptide antibiotics† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc03678d , 2019, Chemical science.

[21]  A. McArthur,et al.  Phylogenetic reconciliation reveals the natural history of glycopeptide antibiotic biosynthesis and resistance , 2019, Nature Microbiology.

[22]  C. Jackson,et al.  Kistamicin biosynthesis reveals the biosynthetic requirements for production of highly crosslinked glycopeptide antibiotics , 2019, Nature Communications.

[23]  S. Lee,et al.  antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline , 2019, Nucleic Acids Res..

[24]  K. Davis,et al.  A Genetics-Free Method for High-Throughput Discovery of Cryptic Microbial Metabolites , 2018, Nature Chemical Biology.

[25]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[26]  R. Süssmuth,et al.  The biosynthetic implications of late-stage condensation domain selectivity during glycopeptide antibiotic biosynthesis† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc03530j , 2018, Chemical science.

[27]  I-Min A. Chen,et al.  IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes , 2018, Nucleic Acids Res..

[28]  Arvind K. Chavali,et al.  Bioinformatics tools for the identification of gene clusters that biosynthesize specialized metabolites , 2018, Briefings Bioinform..

[29]  K. Williams,et al.  Microbial communities across a hillslope‐riparian transect shaped by proximity to the stream, groundwater table, and weathered bedrock , 2018, bioRxiv.

[30]  Mohammad Alanjary,et al.  Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species , 2018, BMC Genomics.

[31]  B. Philmus,et al.  Self-Resistance of Natural Product Producers: Past, Present, and Future Focusing on Self-Resistant Protein Variants. , 2018, ACS chemical biology.

[32]  Frank Wesche,et al.  De novo design and engineering of non-ribosomal peptide synthetases. , 2018, Nature chemistry.

[33]  A. Mark,et al.  Developments in Glycopeptide Antibiotics , 2018, ACS infectious diseases.

[34]  Wen J. Li,et al.  RefSeq: an update on prokaryotic genome annotation and curation , 2017, Nucleic Acids Res..

[35]  Jeroniza Nunes Marchaukoski,et al.  New Tools in Orthology Analysis: A Brief Review of Promising Perspectives , 2017, Front. Genet..

[36]  Donovan H. Parks,et al.  Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life , 2017, Nature Microbiology.

[37]  T. Schneider,et al.  Targeting a cell wall biosynthesis hot spot. , 2017, Natural product reports.

[38]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[39]  M. Seyedsayamdost,et al.  Nonomuraea sp. ATCC 55076 harbours the largest actinomycete chromosome to date and the kistamicin biosynthetic gene cluster , 2017, MedChemComm.

[40]  Martina Adamek,et al.  Mining Bacterial Genomes for Secondary Metabolite Gene Clusters. , 2017, Methods in molecular biology.

[41]  Gerard D. Wright,et al.  Catalytic promiscuity of glycopeptide N-methyltransferases enables bio-orthogonal labelling of biosynthetic intermediates. , 2016, Chemical communications.

[42]  Tilmann Weber,et al.  The evolution of genome mining in microbes - a review. , 2016, Natural product reports.

[43]  Eric P. Nawrocki,et al.  NCBI prokaryotic genome annotation pipeline , 2016, Nucleic acids research.

[44]  J. Reinstein,et al.  Regulation of the P450 Oxygenation Cascade Involved in Glycopeptide Antibiotic Biosynthesis. , 2016, Journal of the American Chemical Society.

[45]  Hong Wang,et al.  Progress in Understanding the Genetic Information and Biosynthetic Pathways behind Amycolatopsis Antibiotics, with Implications for the Continued Discovery of Novel Drugs , 2016, Chembiochem : a European journal of chemical biology.

[46]  A. Gulick,et al.  Structural Biology of Non-Ribosomal Peptide Synthetases , 2016 .

[47]  R. Süssmuth,et al.  Structural aspects of phenylglycines, their biosynthesis and occurrence in peptide natural products. , 2015, Natural product reports.

[48]  Károly Héberger,et al.  Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? , 2015, Journal of Cheminformatics.

[49]  M. Cryle,et al.  X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis , 2015, Nature.

[50]  Gerard D. Wright,et al.  Opportunities for Synthetic Biology in Antibiotics: Expanding Glycopeptide Chemical Diversity , 2012, ACS synthetic biology.

[51]  Andrej Sali,et al.  A Systematic Computational Analysis of Biosynthetic Gene Cluster Evolution: Lessons for Engineering Biosynthesis , 2014, PLoS Comput. Biol..

[52]  Gerard D. Wright,et al.  Harnessing the Synthetic Capabilities of Glycopeptide Antibiotic Tailoring Enzymes: Characterization of the UK‐68,597 Biosynthetic Cluster , 2014, Chembiochem : a European journal of chemical biology.

[53]  S. Yang,et al.  Draft Genome Sequence of Ristocetin-Producing Strain Amycolatopsis sp. Strain MJM2582 Isolated in South Korea , 2014, Genome Announcements.

[54]  M. Cooper,et al.  Glycopeptide antibiotics: Back to the future , 2014, The Journal of Antibiotics.

[55]  A. Truman,et al.  The pathway-specific regulatory genes, tei15* and tei16*, are the master switches of teicoplanin production in Actinoplanes teichomyceticus , 2014, Applied Microbiology and Biotechnology.

[56]  Hee‐Jeon Hong,et al.  Genome Sequence of Streptomyces toyocaensis NRRL 15009, Producer of the Glycopeptide Antibiotic A47934 , 2014, Genome Announcements.

[57]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[58]  S. Yang,et al.  Antibiotic Resistance Mechanisms Inform Discovery: Identification and Characterization of a Novel Amycolatopsis Strain Producing Ristocetin , 2014, Antimicrobial Agents and Chemotherapy.

[59]  Gerard D. Wright,et al.  Glycopeptide antibiotic biosynthesis , 2013, The Journal of Antibiotics.

[60]  Guo-Ping Zhao,et al.  Complete genome sequence and comparative genomic analyses of the vancomycin-producing Amycolatopsis orientalis , 2014, BMC Genomics.

[61]  Nicholas Waglechner,et al.  Identifying producers of antibacterial compounds by screening for antibiotic resistance , 2013, Nature Biotechnology.

[62]  Paula Y. Calle,et al.  Mapping gene clusters within arrayed metagenomic libraries to expand the structural diversity of biomedically relevant natural products , 2013, Proceedings of the National Academy of Sciences.

[63]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[64]  Gerard D. Wright,et al.  Glycopeptide Sulfation Evades Resistance , 2012, Journal of bacteriology.

[65]  J. Badger,et al.  The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity , 2012, PloS one.

[66]  Kai Blin,et al.  NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity , 2011, Nucleic Acids Res..

[67]  Paula Y. Calle,et al.  Tailoring enzyme-rich environmental DNA clones: a source of enzymes for generating libraries of unnatural natural products. , 2010, Journal of the American Chemical Society.

[68]  W. Wohlleben,et al.  Glycopeptide biosynthesis in the context of basic cellular functions. , 2010, Current opinion in microbiology.

[69]  J. Nielsen,et al.  Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster. , 2010, Metabolic engineering.

[70]  I. Schlichting,et al.  Structural Characterization of OxyD, a Cytochrome P450 Involved in β-Hydroxytyrosine Formation in Vancomycin Biosynthesis , 2010, The Journal of Biological Chemistry.

[71]  A. Scaloni,et al.  Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina , 2010, Proteomics.

[72]  R. Süssmuth,et al.  The Thioesterase Bhp is Involved in the Formation of β‐Hydroxytyrosine during Balhimycin Biosynthesis in Amycolatopsis balhimycina , 2010, Chembiochem : a European journal of chemical biology.

[73]  Elke Dittmann,et al.  Bioinformatic perspectives on NRPS/PKS megasynthases: advances and challenges. , 2009, Natural product reports.

[74]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[75]  Adam P. Arkin,et al.  FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix , 2009, Molecular biology and evolution.

[76]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[77]  R. Süssmuth,et al.  Chapter 18. Molecular genetic approaches to analyze glycopeptide biosynthesis. , 2009, Methods in enzymology.

[78]  S. Brady,et al.  Cloning and characterization of new glycopeptide gene clusters found in an environmental DNA megalibrary , 2008, Proceedings of the National Academy of Sciences.

[79]  P. Leadlay,et al.  The role of cep15 in the biosynthesis of chloroeremomycin: reactivation of an ancestral catalytic function. , 2008, Chemistry & biology.

[80]  W. Wohlleben,et al.  The ABC transporter Tba of Amycolatopsis balhimycina is required for efficient export of the glycopeptide antibiotic balhimycin , 2007, Applied Microbiology and Biotechnology.

[81]  E. Takano,et al.  The Border Sequence of the Balhimycin Biosynthesis Gene Cluster from Amycolatopsis balhimycina Contains bbr, Encoding a StrR-Like Pathway-Specific Regulator , 2007, Journal of Molecular Microbiology and Biotechnology.

[82]  John A. Robinson,et al.  Oxidative phenol coupling reactions catalyzed by OxyB: a cytochrome P450 from the vancomycin producing organism. implications for vancomycin biosynthesis. , 2007, Journal of the American Chemical Society.

[83]  C. Rausch,et al.  The small MbtH-like protein encoded by an internal gene of the balhimycin biosynthetic gene cluster is not required for glycopeptide production. , 2006, FEMS microbiology letters.

[84]  John A. Robinson,et al.  Genetic analysis of the balhimycin (vancomycin-type) oxygenase genes. , 2006, Journal of biotechnology.

[85]  S. Stinchi,et al.  A derivative of the glycopeptide A40926 produced by inactivation of the beta-hydroxylase gene in Nonomuraea sp. ATCC39727. , 2006, FEMS microbiology letters.

[86]  D. Huson,et al.  Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.

[87]  Tilmann Weber,et al.  Comparative analysis and insights into the evolution of gene clusters for glycopeptide antibiotic biosynthesis , 2005, Molecular Genetics and Genomics.

[88]  John A. Robinson,et al.  An oxidative phenol coupling reaction catalyzed by oxyB, a cytochrome P450 from the vancomycin-producing microorganism. , 2004, Angewandte Chemie.

[89]  Daniel H. Huson,et al.  Phylogenetic super-networks from partial trees , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[90]  N. Kelleher,et al.  Role of the active site cysteine of DpgA, a bacterial type III polyketide synthase. , 2004, Biochemistry.

[91]  E. Stackebrandt,et al.  Amycolatopsis decaplanina sp. nov., a novel member of the genus with unusual morphology. , 2004, International journal of systematic and evolutionary microbiology.

[92]  Lubbert Dijkhuizen,et al.  Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. , 2004, Microbiology.

[93]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[94]  Ameriga Lazzarini,et al.  The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by nonomuraea species. , 2003, Chemistry & biology.

[95]  S. R. Nadkarni,et al.  Three new antibiotic producing species of the genus Amycolatopsis, Amycolatopsis balhimycina sp. nov., A. tolypomycina sp. nov., A. vancoresmycina sp. nov., and description of Amycolatopsis keratiniphila subsp. keratiniphila subsp. nov. and A. keratiniphila subsp. nogabecina subsp. nov. , 2003, Systematic and applied microbiology.

[96]  M. Marahiel,et al.  Timing of epimerization and condensation reactions in nonribosomal peptide assembly lines: kinetic analysis of phenylalanine activating elongation modules of tyrocidine synthetase B. , 2002, Biochemistry.

[97]  C. Walsh,et al.  Assembling the glycopeptide antibiotic scaffold: The biosynthesis of from Streptomyces toyocaensis NRRL15009 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[98]  W. Wohlleben,et al.  Nonribosomal biosynthesis of vancomycin-type antibiotics: a heptapeptide backbone and eight peptide synthetase modules. , 2002, Microbiology.

[99]  C. Walsh,et al.  Formation of beta-hydroxy histidine in the biosynthesis of nikkomycin antibiotics. , 2002, Chemistry & biology.

[100]  C. Walsh,et al.  Glycopeptide antibiotic biosynthesis: Enzymatic assembly of the dedicated amino acid monomer (S)-3,5-dihydroxyphenylglycine , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[101]  W. Wohlleben,et al.  A Polyketide Synthase in Glycopeptide Biosynthesis , 2001, The Journal of Biological Chemistry.

[102]  C. Walsh,et al.  Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[103]  O. Genilloud,et al.  The complestatins as HIV-1 integrase inhibitors. Efficient isolation, structure elucidation, and inhibitory activities of isocomplestatin, chloropeptin I, new complestatins, A and B, and acid-hydrolysis products of chloropeptin I. , 2001, Journal of natural products.

[104]  C. Walsh,et al.  Coumarin formation in novobiocin biosynthesis: beta-hydroxylation of the aminoacyl enzyme tyrosyl-S-NovH by a cytochrome P450 NovI. , 2001, Chemistry & biology.

[105]  D. Williams,et al.  Characterisation of a hydroxymandelate oxidase involved in the biosynthesis of two unusual amino acids occurring in the vancomycin group of antibiotics. , 2001, Chemical communications.

[106]  C. Walsh,et al.  Biosynthesis of L-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics. , 2000, Chemistry & biology.

[107]  R. Firn,et al.  The evolution of secondary metabolism – a unifying model , 2000, Molecular microbiology.

[108]  K. Nicolaou,et al.  Chemistry, Biology, and Medicine of the Glycopeptide Antibiotics. , 1999, Angewandte Chemie.

[109]  T. Stachelhaus,et al.  The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. , 1999, Chemistry & biology.

[110]  J. Recktenwald,et al.  Identification and Analysis of the Balhimycin Biosynthetic Gene Cluster and Its Use for Manipulating Glycopeptide Biosynthesis in Amycolatopsis mediterranei DSM5908 , 1999, Antimicrobial Agents and Chemotherapy.

[111]  Daniel H. Huson,et al.  SplitsTree: analyzing and visualizing evolutionary data , 1998, Bioinform..

[112]  M. Limbert,et al.  New 4-oxovancosamine-containing glycopeptide antibiotics from Amycolatopsis sp. Y-86,21022. , 1996, The Journal of antibiotics.

[113]  D. Labeda Amycolatopsis coloradensis sp. nov., the Avoparcin (LL-AV290)-Producing Strain , 1995 .

[114]  T. Oki,et al.  New antiviral antibiotics, kistamicins A and B. I. Taxonomy, production, isolation, physico-chemical properties and biological activities. , 1993, The Journal of antibiotics.

[115]  T. Oki,et al.  New antiviral antibiotics, kistamicins A and B. II. Structure determination. , 1993, The Journal of antibiotics.

[116]  R. Wenzel,et al.  In vitro activity of decaplanin (M86-1410), a new glycopeptide antibiotic , 1992, Antimicrobial Agents and Chemotherapy.

[117]  I. Kaneko,et al.  Structure of complestatin, a very strong inhibitor of protease activity of complement in the human complement system , 1989 .

[118]  L. D. Boeck,et al.  Biosynthetic studies on antibiotic A47934 , 1987, Antimicrobial Agents and Chemotherapy.

[119]  S. Carr,et al.  Parvodicin, a novel glycopeptide from a new species, Actinomadura parvosata: discovery, taxonomy, activity and structure elucidation. , 1987, The Journal of antibiotics.

[120]  L. Mueller,et al.  Actinoidins A and A2: structure determination using 2D NMR methods. , 1987, The Journal of antibiotics.

[121]  F. Parenti Structure and mechanism of action of teicoplanin. , 1986, The Journal of hospital infection.

[122]  C. Harris,et al.  Structural Studies of Ristocetin A (Ristomycin A): Carbohydrate-Aglycone Linkages , 1980 .

[123]  J. S. Holker,et al.  Structure of avoparcin components , 1980 .

[124]  C. Coronelli,et al.  Teichomycins, new antibiotics from Actinoplanes teichomyceticus nov. sp. II. Extraction and chemical characterization. , 1978, The Journal of antibiotics.

[125]  Olga Kennard,et al.  Structure of vancomycin and its complex with acetyl-D-alanyl-D-alanine , 1978, Nature.

[126]  M. H. McCormick,et al.  Vancomycin, a new antibiotic. I. Chemical and biologic properties. , 1955, Antibiotics annual.