Relativistic electron beams driven by kHz single-cycle light pulses

Laser-plasma acceleration(1,2) is an emerging technique for accelerating electrons to high energies over very short distances. The accelerated electron bunches have femtosecond duration(3,4), making them particularly relevant for applications such as ultrafast imaging(5) or femtosecond X-ray generation(6,7). Current laser-plasma accelerators deliver 100 MeV (refs 8-10) to GeV (refs 11, 12) electrons using Joule-class laser systems that are relatively large in scale and have low repetition rates, with a few shots per second at best. Nevertheless, extending laser-plasma acceleration to higher repetition rates would be extremely useful for applications requiring lower electron energy. Here, we use single-cycle laser pulses to drive high-quality MeV relativistic electron beams, thereby enabling kHz operation and dramatic downsizing of the laser system. Numerical simulations indicate that the electron bunches are only similar to 1 fs long. We anticipate that the advent of these kHz femtosecond relativistic electron sources will pave the way to applications with wide impact, such as ultrafast electron diffraction in materials(13,14) with an unprecedented sub-10 fs resolution(15).

[1]  Erik Lefebvre,et al.  Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator , 2011 .

[2]  W. Mori,et al.  Nonlinear theory for relativistic plasma wakefields in the blowout regime. , 2006, Physical review letters.

[3]  B. Alonso,et al.  Characterization of broadband few-cycle laser pulses with the d-scan technique. , 2012, Optics express.

[4]  A. Jullien,et al.  Effect of the Laser Wave Front in a Laser-Plasma Accelerator , 2015 .

[5]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[6]  Rajiv C. Shah,et al.  All-optical Compton gamma-ray source , 2012, Nature Photonics.

[7]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[8]  Jean-Philippe Rousseau,et al.  Carrier-envelope-phase stable, high-contrast, double chirped-pulse-amplification laser system. , 2014, Optics letters.

[9]  M. Tzoufras,et al.  Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime , 2007 .

[10]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[11]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[12]  Germán Sciaini,et al.  Femtosecond electron diffraction: heralding the era of atomically resolved dynamics , 2011 .

[13]  Helder Crespo,et al.  Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers , 2014, 1802.00599.

[14]  J. Meyer-ter-Vehn,et al.  Laser wake field acceleration: the highly non-linear broken-wave regime , 2002 .

[15]  Victor Malka,et al.  Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate , 2013 .

[16]  I. V. Glazyrin,et al.  Ionization induced trapping in a laser wakefield accelerator. , 2009, Physical review letters.

[17]  G. Malka,et al.  Electron Acceleration by a Wake Field Forced by an Intense Ultrashort Laser Pulse , 2002, Science.

[18]  M. G. Lagally,et al.  Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator , 2016, Scientific Reports.

[19]  Ferenc Krausz,et al.  Real-time observation of laser-driven electron acceleration , 2011 .

[20]  Agustin Lifschitz,et al.  Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses , 2014 .

[21]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[22]  Multi-MeV Electron Acceleration by Subterawatt Laser Pulses. , 2015, Physical review letters.

[23]  R. Miller,et al.  Femtosecond Crystallography with Ultrabright Electrons and X-rays: Capturing Chemistry in Action , 2014, Science.

[24]  A. Lifschitz,et al.  Concept of a laser-plasma based electron source for sub-10 fs electron diffraction , 2015, 1510.04119.

[25]  T. Ditmire,et al.  Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV , 2013, Nature Communications.

[26]  Victor Malka,et al.  Optical phase effects in electron wakefield acceleration using few-cycle laser pulses , 2012 .

[27]  K. Krushelnick,et al.  High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp , 2012, 1204.6414.

[28]  G. Lambert,et al.  Femtosecond x rays from laser-plasma accelerators , 2013, 1301.5066.

[29]  K. Nakamura,et al.  Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. , 2014, Physical review letters.

[30]  Erik Lefebvre,et al.  Particle-in-Cell modelling of laser-plasma interaction using Fourier decomposition , 2009, J. Comput. Phys..

[31]  A. Zewail 4D ultrafast electron diffraction, crystallography, and microscopy. , 2006, Annual review of physical chemistry.

[32]  A Pak,et al.  Injection and trapping of tunnel-ionized electrons into laser-produced wakes. , 2009, Physical review letters.