Regularized Latent Class Analysis with Application in Cognitive Diagnosis

Diagnostic classification models are confirmatory in the sense that the relationship between the latent attributes and responses to items is specified or parameterized. Such models are readily interpretable with each component of the model usually having a practical meaning. However, parameterized diagnostic classification models are sometimes too simple to capture all the data patterns, resulting in significant model lack of fit. In this paper, we attempt to obtain a compromise between interpretability and goodness of fit by regularizing a latent class model. Our approach starts with minimal assumptions on the data structure, followed by suitable regularization to reduce complexity, so that readily interpretable, yet flexible model is obtained. An expectation–maximization-type algorithm is developed for efficient computation. It is shown that the proposed approach enjoys good theoretical properties. Results from simulation studies and a real application are presented.

[1]  J. Templin,et al.  Unique Characteristics of Diagnostic Classification Models: A Comprehensive Review of the Current State-of-the-Art , 2008 .

[2]  Runze Li,et al.  Tuning parameter selectors for the smoothly clipped absolute deviation method. , 2007, Biometrika.

[3]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[4]  B. Junker,et al.  Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric Item Response Theory , 2001 .

[5]  R. Nishii Asymptotic Properties of Criteria for Selection of Variables in Multiple Regression , 1984 .

[6]  Mark J. Gierl,et al.  Cognitive diagnostic assessment for education: Theory and applications. , 2007 .

[7]  Kikumi K. Tatsuoka,et al.  A Probabilistic Model for Diagnosing Misconceptions By The Pattern Classification Approach , 1985 .

[8]  Jeffrey A Douglas,et al.  Higher-order latent trait models for cognitive diagnosis , 2004 .

[9]  Matthias von Davier,et al.  A general diagnostic model applied to language testing data. , 2008, The British journal of mathematical and statistical psychology.

[10]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[11]  Curtis Tatsuoka,et al.  Data analytic methods for latent partially ordered classification models , 2002 .

[12]  Yingying Fan,et al.  Tuning parameter selection in high dimensional penalized likelihood , 2013, 1605.03321.

[13]  F. Krauss Latent Structure Analysis , 1980 .

[14]  K. Tatsuoka Cognitive Assessment: An Introduction to the Rule Space Method , 2009 .

[15]  Olga V. Demler,et al.  Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. , 2005, Archives of general psychiatry.

[16]  Thomas S. Ferguson,et al.  Sequential classification on partially ordered sets , 2003 .

[17]  Dan J Stein,et al.  Social Anxiety Disorder , 1999, CNS Spectrums.

[18]  Jingchen Liu,et al.  Data-Driven Learning of Q-Matrix , 2012, Applied psychological measurement.

[19]  Tao Wang,et al.  Consistent tuning parameter selection in high dimensional sparse linear regression , 2011, J. Multivar. Anal..

[20]  Z. Ying,et al.  Statistical Analysis of Q-Matrix Based Diagnostic Classification Models , 2015, Journal of the American Statistical Association.

[21]  John T. Willse,et al.  Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables , 2009 .

[22]  S. Haberman,et al.  Hierarchical Diagnostic Classification Models Morphing into Unidimensional ‘Diagnostic’ Classification Models—A Commentary , 2014, Psychometrika.

[23]  Marcel A. Croon,et al.  Latent class analysis with ordered latent classe , 1990 .

[24]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[25]  Z. Ying,et al.  Chernoff Index for Cox Test of Separate Parametric Families. , 2016, Annals of statistics.

[26]  Matthias von Davier The DINA model as a constrained general diagnostic model: Two variants of a model equivalency. , 2014, The British journal of mathematical and statistical psychology.

[27]  Janet B W Williams,et al.  Diagnostic and Statistical Manual of Mental Disorders , 2013 .

[28]  J. D. L. Torre,et al.  The Generalized DINA Model Framework. , 2011 .

[29]  Jingchen Liu,et al.  Theory of the Self-learning Q-Matrix. , 2010, Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability.

[30]  Dc Washington Diagnostic and Statistical Manual of Mental Disorders, 4th Ed. , 1994 .

[31]  Matthias von Davier,et al.  COMPARISON OF MULTIDIMENSIONAL ITEM RESPONSE MODELS: MULTIVARIATE NORMAL ABILITY DISTRIBUTIONS VERSUS MULTIVARIATE POLYTOMOUS ABILITY DISTRIBUTIONS , 2008 .

[32]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[33]  Mark J. Gierl,et al.  The Attribute Hierarchy Method for Cognitive Assessment: A Variation on Tatsuoka's Rule-Space Approach , 2004 .

[34]  L. A. Goodman The Analysis of Systems of Qualitative Variables When Some of the Variables Are Unobservable. Part I-A Modified Latent Structure Approach , 1974, American Journal of Sociology.

[35]  Jingchen Liu,et al.  Online Item Calibration for Q-Matrix in CD-CAT , 2015, Applied psychological measurement.

[36]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .

[37]  Edward H. Haertel Using restricted latent class models to map the skill structure of achievement items , 1989 .

[38]  Gongjun Xu,et al.  Identifiability of restricted latent class models with binary responses , 2016, 1603.04140.

[39]  Marcel A. Croon,et al.  Investigating Mokken scalability of dichotomous items by means of ordinal latent class analysis , 1991 .

[40]  Chenlei Leng,et al.  Shrinkage tuning parameter selection with a diverging number of parameters , 2008 .

[41]  Jonathan Templin,et al.  Diagnostic Measurement: Theory, Methods, and Applications , 2010 .

[42]  Matthias von Davier,et al.  A General Diagnostic Model Applied to Language Testing Data. Research Report. ETS RR-05-16. , 2005 .

[43]  K. Dalrymple,et al.  Differentiating the subtypes of social anxiety disorder , 2013, Expert review of neurotherapeutics.

[44]  C. Matias,et al.  Identifiability of parameters in latent structure models with many observed variables , 2008, 0809.5032.

[45]  J. Templin,et al.  Measurement of psychological disorders using cognitive diagnosis models. , 2006, Psychological methods.

[46]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[47]  Jiahua Chen,et al.  Extended Bayesian information criteria for model selection with large model spaces , 2008 .