Illustrating how mechanical assemblies work

How-things-work visualizations use a variety of visual techniques to depict the operation of complex mechanical assemblies. We present an automated approach for generating such visualizations. Starting with a 3D CAD model of an assembly, we first infer the motions of the individual parts and the interactions across the parts based on their geometry and a few user-specified constraints. We then use this information to generate visualizations that incorporate motion arrows, frame sequences, and animation to convey the causal chain of motions and mechanical interactions across parts. We demonstrate our system on a wide variety of assemblies.

[1]  Wilmot Li,et al.  Exploded View Diagrams of Mathematical Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[2]  Maneesh Agrawala,et al.  Illustrating how mechanical assemblies work , 2010 .

[3]  Niloy J. Mitra,et al.  Abstraction of man-made shapes , 2009, ACM Trans. Graph..

[4]  Frédo Durand,et al.  Procedural modeling of structurally-sound masonry buildings , 2009, ACM Trans. Graph..

[5]  Kun Zhou,et al.  Joint-aware manipulation of deformable models , 2009, ACM Trans. Graph..

[6]  Daniel Cohen-Or,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, ACM Trans. Graph..

[7]  Adam Finkelstein,et al.  Adaptive cutaways for comprehensible rendering of polygonal scenes , 2008, SIGGRAPH Asia '08.

[8]  David Salesin,et al.  Automated generation of interactive 3D exploded view diagrams , 2008, ACM Trans. Graph..

[9]  Daniel Cohen-Or,et al.  Upright orientation of man-made objects , 2008, ACM Trans. Graph..

[10]  Mary Hegarty,et al.  Top-down and bottom-up influences on learning from animations , 2007, Int. J. Hum. Comput. Stud..

[11]  Randall Davis,et al.  Magic Paper: Sketch-Understanding Research , 2007, Computer.

[12]  Pierre Poulin,et al.  Motion cues for illustration of skeletal motion capture data , 2007, NPAR '07.

[13]  David Salesin,et al.  Interactive cutaway illustrations of complex 3D models , 2007, ACM Trans. Graph..

[14]  Dirk Roose,et al.  Detection of closed sharp edges in point clouds using normal estimation and graph theory , 2007, Comput. Aided Des..

[15]  Stefan Bruckner,et al.  Exploded Views for Volume Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[16]  Dony,et al.  Iconic versus naturalistic motion cues in automated reverse storyboarding , 2006 .

[17]  Leonidas J. Guibas,et al.  Partial and approximate symmetry detection for 3D geometry , 2006, ACM Trans. Graph..

[18]  Dan B. Goldman,et al.  Schematic storyboarding for video visualization and editing , 2006, ACM Trans. Graph..

[19]  Barbara Tversky,et al.  Arrows in Comprehending and Producing Mechanical Diagrams , 2006, Cogn. Sci..

[20]  Penny Rheingans,et al.  Illustration-inspired techniques for visualizing time-varying data , 2005, VIS 05. IEEE Visualization, 2005..

[21]  John P. Collomosse,et al.  Rendering cartoon-style motion cues in post-production video , 2005, Graph. Model..

[22]  Daniel Cohen-Or,et al.  Action synopsis: pose selection and illustration , 2005, ACM Trans. Graph..

[23]  Irfan A. Essa,et al.  Video-based nonphotorealistic and expressive illustration of motion , 2005, International 2005 Computer Graphics.

[24]  Jürgen Döllner,et al.  Depicting dynamics using principles of visual art and narrations , 2005, IEEE Computer Graphics and Applications.

[25]  Steven K. Feiner,et al.  Cutaways and ghosting: satisfying visibility constraints in dynamic 3D illustrations , 1992, The Visual Computer.

[26]  Ivan Viola,et al.  Importance-driven volume rendering , 2004, IEEE Visualization 2004.

[27]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[28]  Leonidas J. Guibas,et al.  Shape segmentation using local slippage analysis , 2004, SGP '04.

[29]  Joseph K. Davidson,et al.  Robots and Screw Theory: Applications of Kinematics and Statics to Robotics , 2004 .

[30]  Mary Hegarty,et al.  The Roles of Mental Animations and External Animations in Understanding Mechanical Systems , 2003 .

[31]  Ravin Balakrishnan,et al.  Using deformations for browsing volumetric data , 2003, IEEE Visualization, 2003. VIS 2003..

[32]  Pat Hanrahan,et al.  Designing effective step-by-step assembly instructions , 2003, ACM Trans. Graph..

[33]  Barbara Tversky,et al.  Animation: can it facilitate? , 2002, Int. J. Hum. Comput. Stud..

[34]  J. Cutting Representing Motion in a Static Image: Constraints and Parallels in Art, Science, and Popular Culture , 2002, Perception.

[35]  N. Hari Narayanan,et al.  Multimedia design for communication of dynamic information , 2002, Int. J. Hum. Comput. Stud..

[36]  Ralph R. Martin,et al.  Algorithms for reverse engineering boundary representation models , 2001, Comput. Aided Des..

[37]  Marshall Brain,et al.  How Stuff Works , 2001 .

[38]  R. Mayer,et al.  Multimedia Learning: The Promise of Multimedia Learning , 2001 .

[39]  Mary Hegarty,et al.  Capacity Limits in Diagrammatic Reasoning , 2000, Diagrams.

[40]  Maic Masuch,et al.  Speedlines: depicting motion in motionless pictures , 1999, SIGGRAPH '99.

[41]  N. Hari Narayanan,et al.  On designing comprehensible interactive hypermedia manuals , 1998, Int. J. Hum. Comput. Stud..

[42]  Neil Ardley,et al.  The new way things work , 1998 .

[43]  M. Hegarty Mental animation: inferring motion from static displays of mechanical systems. , 1992, Journal of experimental psychology. Learning, memory, and cognition.

[44]  Steven K. Feiner,et al.  Automated generation of intent-based 3D Illustrations , 1991, SIGGRAPH.

[45]  C. Van Amerongen The way things work book of the computer: An illustrated encyclopedia of information science, cybernetics, and data processing , 1975 .

[46]  D'arcy W. Thompson On Growth and Form , 1917, Nature.

[47]  Felix C. Klein,et al.  A comparative review of recent researches in geometry , 1893, 0807.3161.