Waveguide-fed optical hybrid plasmonic patch nano-antenna.

We propose a novel optical hybrid plasmonic patch nano-antenna for operation at the standard telecommunication wavelength of 1550 nm. The nano-antenna is designed to be compatible with a hybrid plasmonic waveguide through matching of both the operational mode and the wave impedance. The antenna is designed to receive the optical signal from a planar waveguide and redirect the signal out of plane, and is therefore useful for inter- or intra-chip optical communications and sensing. The transmission line model in conjunction with surface plasmon theory is used to develop analytical formulas for design and analysis, and a 3-dimensional full-wave numerical method is used to validate the design. The proposed device provides a bandwidth of more than 15 THz, a gain of 5.6 dB, and an efficiency of 87%. Furthermore, by designing an 8 × 8 array of the proposed antenna, a directivity of 20 dBi and steering of the beam angle are achieved by controlling the relative phase shift between elements of the array.

[1]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[2]  K. Chau,et al.  Design and optimization of a high-efficiency nanoscale +90° light-bending structure by mode selection and tailoring , 2010 .

[3]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[4]  Fischer,et al.  Observation of single-particle plasmons by near-field optical microscopy. , 1989, Physical review letters.

[5]  Nader Engheta,et al.  Hertzian plasmonic nanodimer as an efficient optical nanoantenna , 2008 .

[6]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[7]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[8]  Sailing He,et al.  A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. , 2009, Optics express.

[9]  Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides. , 2011, Optics express.

[10]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[11]  Vien Van,et al.  Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. , 2010, Optics express.

[12]  Charles K. Toth,et al.  R&D OF MOBILE LIDAR MAPPING AND FUTURE TRENDS , 2009 .

[13]  Ami Yaacobi,et al.  Vertical emitting aperture nanoantennas. , 2012, Optics letters.

[14]  Jean-Jacques Greffet,et al.  Thermal radiation scanning tunnelling microscopy , 2006, Nature.

[15]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[16]  Rupert F. Oulton,et al.  Surface plasmon lasers: sources of nanoscopic light , 2012 .

[17]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[18]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[19]  Fischer Uc,et al.  Observation of single-particle plasmons by near-field optical microscopy. , 1989 .

[20]  S. Sederberg,et al.  Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna. , 2011, Optics express.

[21]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[22]  F. J. González,et al.  Comparison of dipole, bowtie, spiral and log-periodic IR antennas , 2005 .

[23]  S Sederberg,et al.  Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared. , 2011, Optics express.

[24]  L. Novotný,et al.  Antennas for light , 2011 .

[25]  J. Marti,et al.  Analysis of Hybrid Dielectric Plasmonic Waveguides , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  John E. Wessel,et al.  Surface-enhanced optical microscopy , 1985 .

[27]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[28]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[29]  Mikael Käll,et al.  A bimetallic nanoantenna for directional colour routing , 2011, Nature communications.

[30]  K. Saraswat,et al.  Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .

[31]  Lukas Novotny,et al.  Near-field optical microscopy and spectroscopy with pointed probes. , 2006, Annual review of physical chemistry.

[32]  Wolfgang Freude,et al.  Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. , 2012, Optics express.

[33]  Thomas Taubner,et al.  Optical antenna thermal emitters , 2009 .

[34]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[35]  Pengyu Fan,et al.  Resonant germanium nanoantenna photodetectors. , 2010, Nano letters.

[36]  Reinhard Guckenberger,et al.  High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. , 2004, Physical review letters.

[37]  Control of 2D plasmon-polariton mode with dielectric nanolayers. , 2008, Optics express.

[38]  Optimization of CMOS-Compatible Hybrid Plasmonic Waveguides for Nonlinear Applications , 2011 .

[39]  H. Giessen,et al.  3-D Optical Yagi-uda Nanoantenna Array , 2010 .

[40]  Fernando D Stefani,et al.  Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. , 2008, Optics express.

[41]  Harald Giessen,et al.  3D optical Yagi–Uda nanoantenna array , 2011, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[42]  Javier Alda,et al.  Optical antennas for nano-photonic applications , 2005 .

[43]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[44]  Volker J. Sorger,et al.  A hybrid plasmonic waveguide for sub-wavelength confinement and long range propagation , 2008 .

[45]  Farzin Amzajerdian,et al.  Lidar systems for precision navigation and safe landing on planetary bodies , 2011, Other Conferences.

[46]  Filippo Capolino,et al.  Silicon-based optical leaky wave antenna with narrow beam radiation. , 2011, Optics express.

[47]  Daniel E. Prober,et al.  Optical antenna: Towards a unity efficiency near-field optical probe , 1997 .

[48]  Richard Soref,et al.  Sub-wavelength Plasmonic Modes in a Conductor-gap-dielectric System with a Nanoscale Gap References and Links , 2022 .