On the Undecidability of some Sub-Classical First-Order Logics

A general criterion for the undecidabily of sub-classical first-order logics and important fragments thereof is established. It is applied, among others, to Urquart's (original version of) C and the closely related logic C*. In addition, hypersequent systems for (first-order) C and C* are introduced and shown to enjoy cut-elimination.

[1]  A. Avron The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .

[2]  José M. Méndez,et al.  Urquhart's C with Intuitionistic Negation: Dummett's LC without the Contraction Axiom , 1995, Notre Dame J. Formal Log..

[3]  Helmut Veith,et al.  Proof Theory of Fuzzy Logics: Urquhart's C and Related Logics , 1998, MFCS.

[4]  Michael Dummett,et al.  A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).

[5]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[6]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[7]  Alasdair Urquhart Many-valued Logic , 1986 .

[8]  Jan Łukasiewicz,et al.  Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls (micro) , 1930 .

[9]  Yuichi Komori Predicate logics without the structure rules , 1986, Stud Logica.

[10]  Eiji Kiriyama,et al.  The contraction rule and decision problems for logics without structural rules , 1991, Stud Logica.

[11]  Agata Ciabattoni,et al.  Bounded Contraction in Systems with Linearity , 1999, TABLEAUX.

[12]  Hiroakira Ono,et al.  Logics without the contraction rule , 1985, Journal of Symbolic Logic.

[13]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[14]  Wilfrid Hodges,et al.  Logic: from foundations to applications: European logic colloquium , 1996 .

[15]  Petr Hájek,et al.  A complete many-valued logic with product-conjunction , 1996, Arch. Math. Log..