On the Undecidability of some Sub-Classical First-Order Logics
暂无分享,去创建一个
[1] A. Avron. The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .
[2] José M. Méndez,et al. Urquhart's C with Intuitionistic Negation: Dummett's LC without the Contraction Axiom , 1995, Notre Dame J. Formal Log..
[3] Helmut Veith,et al. Proof Theory of Fuzzy Logics: Urquhart's C and Related Logics , 1998, MFCS.
[4] Michael Dummett,et al. A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).
[5] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[6] Jean-Yves Girard,et al. Linear Logic , 1987, Theor. Comput. Sci..
[7] Alasdair Urquhart. Many-valued Logic , 1986 .
[8] Jan Łukasiewicz,et al. Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls (micro) , 1930 .
[9] Yuichi Komori. Predicate logics without the structure rules , 1986, Stud Logica.
[10] Eiji Kiriyama,et al. The contraction rule and decision problems for logics without structural rules , 1991, Stud Logica.
[11] Agata Ciabattoni,et al. Bounded Contraction in Systems with Linearity , 1999, TABLEAUX.
[12] Hiroakira Ono,et al. Logics without the contraction rule , 1985, Journal of Symbolic Logic.
[13] M. Nivat. Fiftieth volume of theoretical computer science , 1988 .
[14] Wilfrid Hodges,et al. Logic: from foundations to applications: European logic colloquium , 1996 .
[15] Petr Hájek,et al. A complete many-valued logic with product-conjunction , 1996, Arch. Math. Log..