Asynchronous algorithms for network utility maximisation with a single bit

We present a convergence result for a nonhomogeneous Markov chain that arises in the study of networks employing the additive-increase multiplicative decrease (AIMD) algorithm. We then use this result to solve the network utility maximisation (NUM) problem.

[1]  Fabian R. Wirth,et al.  A positive systems model of TCP-like congestion control: asymptotic results , 2006, IEEE/ACM Transactions on Networking.

[2]  Rayadurgam Srikant,et al.  The Mathematics of Internet Congestion Control (Systems and Control: Foundations and Applications) , 2004 .

[3]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[4]  Martin J. Wainwright,et al.  Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling , 2010, IEEE Transactions on Automatic Control.

[5]  Johan Driesen,et al.  Coordinated charging of multiple plug-in hybrid electric vehicles in residential distribution grids , 2009, 2009 IEEE/PES Power Systems Conference and Exposition.

[6]  Pascal Bianchi,et al.  Performance of a Distributed Stochastic Approximation Algorithm , 2012, IEEE Transactions on Information Theory.

[7]  Robert Shorten,et al.  Plug-and-Play Distributed Algorithms for Optimized Power Generation in a Microgrid , 2014, IEEE Transactions on Smart Grid.

[8]  A. Robert Calderbank,et al.  Layering as Optimization Decomposition: A Mathematical Theory of Network Architectures , 2007, Proceedings of the IEEE.

[9]  V. Jacobson,et al.  Congestion avoidance and control , 1988, CCRV.

[10]  Robert Shorten,et al.  Modelling TCP congestion control dynamics in drop-tail environments , 2007, Autom..

[11]  Alexander J. Smola,et al.  Parallelized Stochastic Gradient Descent , 2010, NIPS.

[12]  Angelia Nedic,et al.  Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization , 2008, J. Optim. Theory Appl..

[13]  Gideon S. Mann,et al.  Efficient Large-Scale Distributed Training of Conditional Maximum Entropy Models , 2009, NIPS.

[14]  Steven H. Low,et al.  Understanding TCP Vegas: a duality model , 2002 .

[15]  Robert Shorten,et al.  A flexible distributed framework for realising electric and plug-in hybrid vehicle charging policies , 2012, Int. J. Control.

[16]  Na Li,et al.  Optimal demand response based on utility maximization in power networks , 2011, 2011 IEEE Power and Energy Society General Meeting.

[17]  Asuman E. Ozdaglar,et al.  Distributed Subgradient Methods for Multi-Agent Optimization , 2009, IEEE Transactions on Automatic Control.

[18]  Fernando Paganini,et al.  Internet congestion control , 2002 .

[19]  Leandros Tassiulas,et al.  A simple rate control algorithm for max total user utility , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[20]  Robert Shorten,et al.  Stochastic Equilibria of AIMD Communication Networks , 2006, SIAM J. Matrix Anal. Appl..

[21]  Robert Shorten,et al.  Nonlinear AIMD Congestion Control and Contraction Mappings , 2007, SIAM J. Control. Optim..

[22]  Qian Zhang,et al.  A Compound TCP Approach for High-Speed and Long Distance Networks , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[23]  Mikael Johansson,et al.  A Randomized Incremental Subgradient Method for Distributed Optimization in Networked Systems , 2009, SIAM J. Optim..

[24]  V. Borkar Stochastic Approximation: A Dynamical Systems Viewpoint , 2008 .

[25]  Jia Yuan Yu,et al.  Nonhomogeneous Place-Dependent Markov Chains, Unsynchronised AIMD, and Network Utility Maximization , 2014, 1404.5064.

[26]  Mohammad A. S. Masoum,et al.  Real-Time Coordination of Plug-In Electric Vehicle Charging in Smart Grids to Minimize Power Losses and Improve Voltage Profile , 2011, IEEE Transactions on Smart Grid.