ELM based signature for texture classification

Texture classification is a very important field of image analysis. Because of this, the literature has been presented methods that provide more and more highly discriminative texture descriptors. This paper aims to contribute to the literature presenting a novel and powerful method to extract texture signature, based on weights of a single-hidden layer neural network called "Extreme Learning Machine" (ELM). We evaluate these descriptors in a classification experiment using three different texture datasets (and their rotated versions): Brodatz, Outex and Vistex. The results demonstrate a high classification accuracy of the method, proving that this novel methodology can be used successfully in computer vision problems. HighlightsIn this study, we model the texture as an Extreme Learning Machine (ELM).ELM is a single-hidden layer feed forward neural network with a very fast learning algorithm.We divided the image into small windows to compute the input and label of the ELM.Pixels of each window are the input, while the central pixel is the label of the ELM.We use the output weights of the ELM as a feature vector for texture classification.

[1]  Hyun Wook Park,et al.  Statistical Textural Features for Detection of Microcalcifications in Digitized Mammograms , 1999, IEEE Trans. Medical Imaging.

[2]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[3]  Gasper Tkacik,et al.  Local statistics in natural scenes predict the saliency of synthetic textures , 2010, Proceedings of the National Academy of Sciences.

[4]  B. Everitt,et al.  Applied Multivariate Data Analysis. , 1993 .

[5]  Xin Jin,et al.  Wavelet-based feature extraction using probabilistic finite state automata for pattern classification , 2011, Pattern Recognit..

[6]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[7]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Robert Azencott,et al.  Texture Classification Using Windowed Fourier Filters , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Qinyu. Zhu Extreme Learning Machine , 2013 .

[10]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[11]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Michal Strzelecki,et al.  Texture Analysis Methods - A Review , 1998 .

[13]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[14]  André Ricardo Backes,et al.  A simplified gravitational model to analyze texture roughness , 2012, Pattern Recognit..

[15]  Ted Maddess,et al.  Locally countable properties and the perceptual salience of textures. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  Chun-Shien Lu,et al.  Unsupervised texture segmentation via wavelet transform , 1997, Pattern Recognit..

[17]  André Ricardo Backes,et al.  Texture analysis and classification using shortest paths in graphs , 2013, Pattern Recognit. Lett..

[18]  Josef Kittler,et al.  On local linear transform and Gabor filter representation of texture , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[19]  RandenTrygve,et al.  Filtering for Texture Classification , 1999 .

[20]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[21]  John Daugman,et al.  Gabor wavelets for statistical pattern recognition , 1998 .

[22]  André Ricardo Backes,et al.  Color texture classification based on gravitational collapse , 2013, Pattern Recognit..

[23]  André Ricardo Backes,et al.  Plant Leaf Identification Based on Volumetric Fractal Dimension , 2009, Int. J. Pattern Recognit. Artif. Intell..

[24]  Azriel Rosenfeld,et al.  A Comparative Study of Texture Measures for Terrain Classification , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[26]  André Ricardo Backes,et al.  Texture analysis and classification using deterministic tourist walk , 2010, Pattern Recognit..

[27]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[28]  Abdulkadir Sengür,et al.  Wavelet packet neural networks for texture classification , 2007, Expert Syst. Appl..

[29]  S. K. Park,et al.  Random number generators: good ones are hard to find , 1988, CACM.

[30]  André Ricardo Backes,et al.  Texture analysis and classification: A complex network-based approach , 2013, Inf. Sci..

[31]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[32]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Zhenhua Guo,et al.  Rotation invariant texture classification using LBP variance (LBPV) with global matching , 2010, Pattern Recognit..

[34]  BrunoOdemir Martinez,et al.  Texture analysis and classification , 2013 .

[35]  Cheng Wang,et al.  A novel extended local-binary-pattern operator for texture analysis , 2008, Inf. Sci..

[36]  Lance M. Kaplan Extended fractal analysis for texture classification and segmentation , 1999, IEEE Trans. Image Process..

[37]  C.-C. Jay Kuo,et al.  Texture analysis and classification with tree-structured wavelet transform , 1993, IEEE Trans. Image Process..

[38]  Vittorio Murino,et al.  Noisy texture classification: A higher-order statistics approach , 1998, Pattern Recognit..

[39]  André Ricardo Backes,et al.  Color Texture Classification Using Shortest Paths in Graphs , 2014, IEEE Transactions on Image Processing.

[40]  Jarbas Joaci de Mesquita Sá Junior,et al.  Plant leaf identification using Gabor wavelets , 2009 .

[41]  Guoan Bi,et al.  On Texture Classification Using Fractal Dimension , 1999, Int. J. Pattern Recognit. Artif. Intell..

[42]  Marc Acheroy,et al.  Texture classification using Gabor filters , 2002, Pattern Recognit. Lett..

[43]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.