Effects of magnetic field on the liquid gallium thermosyphon fluid flow; a numerical study
暂无分享,去创建一个
[1] Ali J. Chamkha,et al. MHD mixed convection of nanofluid due to an inner rotating cylinder in a 3D enclosure with a phase change material , 2019, International journal of numerical methods for heat & fluid flow.
[2] Hamid Teimouri,et al. Numerical investigation of a thermosyphon MHD electrical power generator , 2019, Energy Conversion and Management.
[3] Ali J. Chamkha,et al. MHD mixed convection of nanofluid in a cubic cavity with a conductive partition for various nanoparticle shapes , 2019, International Journal of Numerical Methods for Heat & Fluid Flow.
[4] D. Toghraie,et al. Effect of MHD on the flow and heat transfer characteristics of nanofluid in a grooved channel with internal heat generation , 2019, International Journal of Numerical Methods for Heat & Fluid Flow.
[5] M. Arik,et al. Numerical and experimental analysis of a heat-pipe-embedded printed circuit board for solid state lighting applications , 2019 .
[6] K. Chau,et al. Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger , 2018, Engineering Applications of Computational Fluid Mechanics.
[7] I. Pop,et al. MHD natural convection and entropy analysis of a nanofluid inside T-shaped baffled enclosure , 2018, International Journal of Numerical Methods for Heat & Fluid Flow.
[8] Xiaowu Wang,et al. Optimal Structure Design of a Thermosyphon Solar Water Heating System with Thermal and Dynamic Models , 2018 .
[9] K. Matsubara,et al. Loop thermosiphon thermal collector for waste heat recovery power generation , 2018, Experimental Heat Transfer.
[10] Xiaohu Yang,et al. Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling , 2018 .
[11] O. Zikanov,et al. Convection instability in a downward flow in a vertical duct with strong transverse magnetic field , 2018, Physics of Fluids.
[12] I. Park,et al. Numerical study of MHD natural convection in a rectangular enclosure with an insulated block , 2017 .
[13] Ali J. Chamkha,et al. MHD phase change heat transfer in an inclined enclosure: Effect of a magnetic field and cavity inclination , 2017 .
[14] Yuwen Zhang,et al. Double MRT thermal lattice Boltzmann method for simulating natural convection of low Prandtl number fluids , 2016, 1601.04633.
[15] H. Yamaguchi,et al. Characteristics of a MHD power generator using a low-melting-point Gallium alloy , 2014 .
[16] In Cheol Bang,et al. An experimental study on natural convection heat transfer of liquid gallium in a rectangular loop , 2013 .
[17] B. Šarler,et al. Solution of a low Prandtl number natural convection benchmark by a local meshless method , 2013 .
[18] Ali J. Chamkha,et al. Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls , 2012 .
[19] Jing Liu,et al. Harvesting low grade heat to generate electricity with thermosyphon effect of room temperature liquid metal , 2011 .
[20] A. Fattahi,et al. Numerical study of steady magneto-convection around an adiabatic body inside a square enclosure in low Prandtl numbers , 2011 .
[21] D. C. Lo,et al. High-resolution simulations of magnetohydrodynamic free convection in an enclosure with a transverse magnetic field using a velocity–vorticity formulation ☆ , 2010 .
[22] Majid Ghassemi,et al. Effect of magnetic field on convection heat transfer inside a tilted square enclosure , 2009 .
[23] M. Misale,et al. Experiments in Single-Phase Natural Circulation Miniloops With Different Working Fluids and Geometries , 2008 .
[24] Pallippattu Krishnan Vijayan,et al. Effect of Loop Diameter on the Steady State and Stability Behaviour of Single-Phase and Two-Phase Natural Circulation Loops , 2008 .
[25] Y. Okuno,et al. Two‐dimensional numerical simulation on performance of liquid metal MHD generator , 2006 .
[26] T. Mullin,et al. Magnetohydrodynamic damping of oscillations in low-Prandtl-number convection , 2005, Journal of Fluid Mechanics.
[27] Man Yeong Ha,et al. A numerical study of natural convection in a horizontal enclosure with a conducting body , 2005 .
[28] N. Ghaddar. Numerical simulation of side‐heated free convection loop placed in transverse magnetic field; the induced electric current , 1998 .
[29] H. Ozoe,et al. OSCILLATORY PHENOMENA OF LOW-PRANDTL-NUMBER FLUIDS IN A RECTANGULAR CAVITY , 1996 .
[30] P. J. Prescott,et al. EFFECT OF TIME MARCHING SCHEMES ON PREDICTIONS OF OSCILLATORY NATURAL CONVECTION IN FLUIDS OF LOW PRANDTL NUMBER , 1996 .
[31] Ronald M. Barron,et al. Effect of a magnetic field on free convection in a rectangular enclosure , 1995 .
[32] P. LeQuéré,et al. Accurate solutions to the square thermally driven cavity at high Rayleigh number , 1991 .
[33] Raymond Viskanta,et al. Transient natural convection of low‐Prandtl‐number fluids in a differentially heated cavity , 1991 .
[34] Adrian Bejan,et al. The Ra-Pr domain of laminar natural convection in an enclosure heated from the side , 1991 .
[35] R. Viskanta,et al. AN EVALUATION OF DIFFERENT DISCRETIZATION SCHEMES FOR NATURAL CONVECTION OF LOW-PRANDTL-NUMBER FLUIDS IN CAVITIES , 1990 .
[36] R. Greif. Natural Circulation Loops , 1988 .
[37] G. de Vahl Davis,et al. Natural convection in a square cavity: A comparison exercise , 1983 .
[38] H. F. Creveling,et al. Stability characteristics of a single-phase free convection loop , 1975, Journal of Fluid Mechanics.