Multifrequency Analysis of 21 Centimeter Fluctuations from the Era of Reionization

We study the prospects for extracting detailed statistical properties of the neutral hydrogen distribution during the era of reionization using the brightness temperature fluctuations from redshifted 21 cm line emission. Detection of this signal is complicated by contamination from foreground sources such as diffuse Galactic synchrotron and free-free emission at low radio frequencies, extragalactic free-free emission from ionized regions, and radio point sources. We model these foregrounds to determine the extent to which 21 cm fluctuations can be detected with upcoming experiments. We find that not only the level of correlation from one frequency to another but also the functional form of the foreground correlations has a substantial impact on foreground removal. We calculate how well the angular power spectra of the 21 cm fluctuations can be determined. We also show that the large-scale bias of the neutral hydrogen gas distribution with respect to the density field can be determined with high precision and used to distinguish between different reionization histories.

[1]  H. Rottgering,et al.  The Westerbork Northern Sky Survey (WENSS) I. A 570 square degree Mini-Survey around the North Ecliptic Pole ? , 1997 .

[2]  Zoltan Haiman,et al.  Fossil H ii regions: self-limiting star formation at high redshift , 2003 .

[3]  Xuelei Chen,et al.  The Spin-Kinetic Temperature Coupling and the Heating Rate due to Lyα Scattering before Reionization: Predictions for 21 Centimeter Emission and Absorption , 2003, astro-ph/0303395.

[4]  Mark Dragovan,et al.  Interferometric observation of cosmic microwave background anisotropies , 1999 .

[5]  S. P. Oh Observational Signatures of the First Luminous Objects , 1999, astro-ph/9904255.

[6]  G. Field An Attempt to Observe Neutral Hydrogen Between the Galaxies. , 1959 .

[7]  K. Subramanian,et al.  Neutral hydrogen at high redshifts as a probe of structure formation - II. Line profile of a protocluster , 1995 .

[8]  On using visibility correlations to probe the Hi distribution from the dark ages to the present epoch – I. Formalism and the expected signal , 2004, astro-ph/0406676.

[9]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[10]  J. Baldwin,et al.  The 6C survey of radio sources – II. The zone $30^\circ \lt \delta \lt 51^\circ, 08^\text h30^\text m\lt\alpha\lt17^\text h30^\text m$ , 1988 .

[11]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.

[12]  SUBMITTED TO APJ Preprint typeset using L ATEX style emulateapj v. 11/12/01 THE REIONIZATION HISTORY AT HIGH REDSHIFTS I: PHYSICAL MODELS AND NEW CONSTRAINTS FROM CMB POLARIZATION , 2003 .

[13]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[14]  Reionization, Sloan, and WMAP: Is the Picture Consistent? , 2004, astro-ph/0403699.

[15]  Robert H. Becker,et al.  Evolution of the ionizing background and the epoch of reionization from the spectra of z ∼ 6 quasars , 2001 .

[16]  Matias Zaldarriaga Polarization of the microwave background in reionized models , 1997 .

[17]  Alexander S. Szalay,et al.  Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.

[18]  Multiple methods for estimating the bispectrum of the cosmic microwave background with application to the MAXIMA data , 2002, astro-ph/0211123.

[19]  Miguel F. Morales POWER SPECTRUM SENSITIVITY AND THE DESIGN OF EPOCH OF REIONIZATION OBSERVATORIES , 2005 .

[20]  Martin J. Rees,et al.  Radio Signatures of H I at High Redshift: Mapping the End of the “Dark Ages” , 2000 .

[21]  Miguel F. Morales,et al.  Toward Epoch of Reionization Measurements with Wide-Field Radio Observations , 2003 .

[22]  Model-independent reionization observables in the CMB , 2003, astro-ph/0303400.

[23]  Max Tegmark Removing Real-World Foregrounds from Cosmic Microwave Background Maps , 1998 .

[24]  The Universe Was Reionized Twice , 2002, astro-ph/0210473.

[25]  Matias Zaldarriaga,et al.  Statistical Probes of Reionization with 21 Centimeter Tomography , 2004, astro-ph/0404112.

[26]  M. Dickinson,et al.  The Angular Clustering of Lyman-Break Galaxies at Redshift z ~ 3 , 1998, astro-ph/9802318.

[27]  Photon Consumption in Minihalos during Cosmological Reionization , 2000, astro-ph/0009125.

[28]  J. Ostriker,et al.  Reionization of the Universe and the Early Production of Metals , 1996, astro-ph/9612127.

[29]  M. Zaldarriaga,et al.  21 Centimeter Fluctuations from Cosmic Gas at High Redshifts , 2003, astro-ph/0311514.

[30]  Ilian T. Iliev,et al.  On the Direct Detectability of the Cosmic Dark Ages: 21 Centimeter Emission from Minihalos , 2002 .

[31]  V. Springel,et al.  An analytical model for the history of cosmic star formation , 2002, astro-ph/0209183.

[32]  Maurice G. Kendall,et al.  Inference and relationship , 1979 .

[33]  Benedetta Ciardi,et al.  The 21-cm emission from the reionization epoch: extended and point source foregrounds , 2004 .

[34]  Martin J. Rees,et al.  21 CENTIMETER TOMOGRAPHY OF THE INTERGALACTIC MEDIUM AT HIGH REDSHIFT , 1996 .

[35]  IoA,et al.  Radio Foregrounds for the 21 Centimeter Tomography of the Neutral Intergalactic Medium at High Redshifts , 2001, astro-ph/0109241.

[36]  Max Tegmark,et al.  Foregrounds and Forecasts for the Cosmic Microwave Background , 2000 .

[37]  C. Skordis,et al.  Probing the Reionization History of the Universe using the Cosmic Microwave Background Polarization , 2002, astro-ph/0207591.

[38]  N. Gnedin Effect of Reionization on Structure Formation in the Universe , 2000, astro-ph/0002151.

[39]  M. Longair,et al.  Bright radio sources at 178 MHz: flux densities, optical identifications and the cosmological evolution of powerful radio galaxies , 1983 .

[40]  Martin J. Rees,et al.  The 21-cm line at high redshift: a diagnostic for the origin of large scale structure , 1990 .

[41]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[42]  J. Shull,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 14/09/00 HEATING AND IONIZATION OF THE INTERGALACTIC MEDIUM , 2001 .

[43]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .

[44]  L. Knox,et al.  Small-Scale Cosmic Microwave Background Temperature and Polarization Anisotropies Due to Patchy Reionization , 2003 .

[45]  Asantha Cooray,et al.  Free-Free Emission at Low Radio Frequencies , 2004 .

[46]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[47]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[48]  Nick Kaiser,et al.  Weak gravitational lensing of distant galaxies , 1992 .

[49]  P. Mcdonald,et al.  Evolution of the Ionizing Radiation Background and Star Formation in the Aftermath of Cosmological Reionization , 2001, astro-ph/0110306.

[50]  Non-uniform reionization by galaxies and its effect on the cosmic microwave background , 2000, astro-ph/0002457.

[51]  Martin J. Rees,et al.  Reionization of the Inhomogeneous Universe , 1998, astro-ph/9812306.

[52]  Nickolay Y. Gnedin,et al.  Redshifted 21 centimeter emission from the pre-reionization era. I. Mean signal and linear fluctuations , 2004 .

[53]  D.Maino,et al.  A determination of the spectral index of galactic synchrotron emission in the 1-10 GHz range , 1997, astro-ph/9707252.

[54]  Cosmic reionization by stellar sources: Population II stars , 2003, astro-ph/0303098.

[55]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[56]  H. Rottgering,et al.  A DEEP, HIGH-RESOLUTION SURVEY AT 74 MHZ , 2003, astro-ph/0310521.

[57]  Can non‐Gaussian cosmological models explain the WMAP high optical depth for reionization? , 2003, astro-ph/0309116.