Generalized McCormick relaxations

Convex and concave relaxations are used extensively in global optimization algorithms. Among the various techniques available for generating relaxations of a given function, McCormick’s relaxations are attractive due to the recursive nature of their definition, which affords wide applicability and easy implementation computationally. Furthermore, these relaxations are typically stronger than those resulting from convexification or linearization procedures. This article leverages the recursive nature of McCormick’s relaxations to define a generalized form which both affords a new framework within which to analyze the properties of McCormick’s relaxations, and extends the applicability of McCormick’s technique to challenging open problems in global optimization. Specifically, relaxations of the parametric solutions of ordinary differential equations are considered in detail, and prospects for relaxations of the parametric solutions of nonlinear algebraic equations are discussed. For the case of ODEs, a complete computational procedure for evaluating convex and concave relaxations of the parametric solutions is described. Through McCormick’s composition rule, these relaxations may be used to construct relaxations for very general optimal control problems.

[1]  Ioannis Papamichail,et al.  Proof of Convergence for a Global Optimization Algorithm for Problems with Ordinary Differential Equations , 2005, J. Glob. Optim..

[2]  C. Floudas,et al.  Global Optimization for the Parameter Estimation of Differential-Algebraic Systems , 2000 .

[3]  A. Neumaier Interval methods for systems of equations , 1990 .

[4]  R. Luus,et al.  Multiplicity of solutions in the optimization of a bifunctional catalyst blend in a tubular reactor , 1992 .

[5]  Paul I. Barton,et al.  Nonlinear convex and concave relaxations for the solutions of parametric ODEs , 2013 .

[6]  P. I. Barton,et al.  Global Solution of Optimization Problems with Parameter-Embedded Linear Dynamic Systems , 2004 .

[7]  Miroslav Fikar,et al.  Global optimization for parameter estimation of differential-algebraic systems , 2009 .

[8]  Efstratios N. Pistikopoulos,et al.  Optimal design of dynamic systems under uncertainty , 1996 .

[9]  David M. GAYt PERTURBATION BOUNDS FOR NONLINEAR EQUATIONS , 1981 .

[10]  P. I. Barton,et al.  Outer approximation algorithms for separable nonconvex mixed-integer nonlinear programs , 2004, Math. Program..

[11]  PAUL I. BARTON,et al.  Bounding the Solutions of Parameter Dependent Nonlinear Ordinary Differential Equations , 2005, SIAM J. Sci. Comput..

[12]  Paul I. Barton,et al.  Improved relaxations for the parametric solutions of ODEs using differential inequalities , 2012, Journal of Global Optimization.

[13]  N. Sahinidis,et al.  Convexification and Global Optimization in Continuous And , 2002 .

[14]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[15]  M. Stadtherr,et al.  Validated solutions of initial value problems for parametric ODEs , 2007 .

[16]  W. Rudin Principles of mathematical analysis , 1964 .

[17]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[18]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization in Nonlinear Optimal Control Problems , 2000, J. Glob. Optim..

[19]  Claire S. Adjiman,et al.  A Rigorous Global Optimization Algorithm for Problems with Ordinary Differential Equations , 2002, J. Glob. Optim..

[20]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[21]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[22]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[23]  Paul I. Barton,et al.  McCormick-Based Relaxations of Algorithms , 2009, SIAM J. Optim..

[24]  C. Adjiman,et al.  Global optimization of mixed‐integer nonlinear problems , 2000 .

[25]  Paul I. Barton,et al.  Tight, efficient bounds on the solutions of chemical kinetics models , 2010, Comput. Chem. Eng..

[26]  J. E. Cuthrell,et al.  On the optimization of differential-algebraic process systems , 1987 .

[27]  Paul I. Barton,et al.  Global Optimization with Nonlinear Ordinary Differential Equations , 2006, J. Glob. Optim..

[28]  Leo Liberti,et al.  Convex Envelopes of Monomials of Odd Degree , 2003, J. Glob. Optim..

[29]  A. Hindmarsh,et al.  CVODE, a stiff/nonstiff ODE solver in C , 1996 .

[30]  Youdong Lin,et al.  Enclosing all solutions of two-point boundary value problems for ODEs , 2008, Comput. Chem. Eng..

[31]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .