Hypoxia Inducible Factor-α Binding and Ubiquitylation by the von Hippel-Lindau Tumor Suppressor Protein*

The von Hippel-Lindau tumor suppressor protein (pVHL) has emerged as a key factor in cellular responses to oxygen availability, being required for the oxygen-dependent proteolysis of α subunits of hypoxia inducible factor-1 (HIF). Mutations in VHL cause a hereditary cancer syndrome associated with dysregulated angiogenesis, and up-regulation of hypoxia inducible genes. Here we investigate the mechanisms underlying these processes and show that extracts from VHL-deficient renal carcinoma cells have a defect in HIF-α ubiquitylation activity which is complemented by exogenous pVHL. This defect was specific for HIF-α among a range of substrates tested. Furthermore, HIF-α subunits were the only pVHL-associated proteasomal substrates identified by comparison of metabolically labeled anti-pVHL immunoprecipitates from proteosomally inhibited cells and normal cells. Analysis of pVHL/HIF-α interactions defined short sequences of conserved residues within the internal transactivation domains of HIF-α molecules sufficient for recognition by pVHL. In contrast, while full-length pVHL and the p19 variant interact with HIF-α, the association was abrogated by further N-terminal and C-terminal truncations. The interaction was also disrupted by tumor-associated mutations in the β-domain of pVHL and loss of interaction was associated with defective HIF-α ubiquitylation and regulation, defining a mechanism by which these mutations generate a constitutively hypoxic pattern of gene expression promoting angiogenesis. The findings indicate that pVHL regulates HIF-α proteolysis by acting as the recognition component of a ubiquitin ligase complex, and support a model in which its β domain interacts with short recognition sequences in HIF-α subunits.

[1]  A. Kibel,et al.  Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C , 1995, Science.

[2]  S. Elledge,et al.  Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. , 1999, Science.

[3]  A. Harris,et al.  Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. , 1998, Blood.

[4]  R. Burk,et al.  A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. Klausner,et al.  Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[6]  L. Huang,et al.  Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway , 1998 .

[7]  J. Caro,et al.  Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. , 1997, The Journal of biological chemistry.

[8]  P. Ratcliffe,et al.  Oxygen-regulated and Transactivating Domains in Endothelial PAS Protein 1: Comparison with Hypoxia-inducible Factor-1α* , 1999, The Journal of Biological Chemistry.

[9]  W. Kaelin,et al.  pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  E. Hanson,et al.  Hypoxia Post-translationally Activates Iron-regulatory Protein 2* , 1999, The Journal of Biological Chemistry.

[11]  J. Pouysségur,et al.  p42/p44 Mitogen-activated Protein Kinases Phosphorylate Hypoxia-inducible Factor 1α (HIF-1α) and Enhance the Transcriptional Activity of HIF-1* , 1999, The Journal of Biological Chemistry.

[12]  M. Nagao,et al.  Activation of Hypoxia-inducible Factor-1; Definition of Regulatory Domains within the α Subunit* , 1997, The Journal of Biological Chemistry.

[13]  W. Kaelin,et al.  Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. , 1999, Science.

[14]  W. Kaelin,et al.  The VHL tumour-suppressor gene paradigm. , 1998, Trends in genetics : TIG.

[15]  Christophe Béroud,et al.  Software and database for the analysis of mutations in the VHL gene , 1998, Nucleic Acids Res..

[16]  D. Livingston,et al.  Activation of Hypoxia-inducible Transcription Factor Depends Primarily upon Redox-sensitive Stabilization of Its α Subunit* , 1996, The Journal of Biological Chemistry.

[17]  S. Salghetti,et al.  Destruction of Myc by ubiquitin‐mediated proteolysis: cancer‐associated and transforming mutations stabilize Myc , 1999, The EMBO journal.

[18]  D. Mukhopadhyay,et al.  Activation of Sp1-mediated Vascular Permeability Factor/Vascular Endothelial Growth Factor Transcription Requires Specific Interaction with Protein Kinase C ζ* , 1998, The Journal of Biological Chemistry.

[19]  A. Hershko,et al.  Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts. , 1991, The Journal of biological chemistry.

[20]  W. Kaelin,et al.  Regulation of Hypoxia-Inducible mRNAs by the von Hippel-Lindau Tumor Suppressor Protein Requires Binding to Complexes Containing Elongins B/C and Cul2 , 1998, Molecular and Cellular Biology.

[21]  D. Louis,et al.  The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. , 1998, Molecular cell.

[22]  M. Tyers,et al.  Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. , 1998, Trends in genetics : TIG.

[23]  D. Duan,et al.  Inhibition of transcription elongation by the VHL tumor suppressor protein , 1995, Science.

[24]  R. Klausner,et al.  Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[25]  B. Zbar,et al.  Synthetic peptides define critical contacts between elongin C, elongin B, and the von Hippel-Lindau protein. , 1999, The Journal of clinical investigation.

[26]  G. Semenza,et al.  Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. , 1999, Annual review of cell and developmental biology.

[27]  G. Semenza,et al.  Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. , 2000, Genes & development.

[28]  B. Futcher,et al.  Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis , 2000 .

[29]  W. Kaelin,et al.  Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Gstaiger,et al.  The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. , 1999, Genes & development.

[31]  G. Semenza,et al.  Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[32]  R. Klausner,et al.  Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  C. Wykoff,et al.  The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis , 1999, Nature.

[34]  R. Klausner,et al.  The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. , 1997, Proceedings of the National Academy of Sciences of the United States of America.