Determining acceptance possibility for a quantum computation is hard for the polynomial hierarchy

It is shown that determining whether a quantum computation has a non–zero probability of accepting is at least as hard as the polynomial–time hierarchy. This hardness result also applies to determining in general whether a given quantum basis state appears with non–zero amplitude in a superposition, or whether a given quantum bit has positive expectation value at the end of a quantum computation. This result is achieved by showing that the complexity class NQP (a quantum analogue of NP) of Adleman, Demarrais and Huang, is equal to the counting class coC=P.

[1]  Jacobo Torán,et al.  The graph isomorphism problem , 2020, Commun. ACM.

[2]  Stephen A. Fenner Quantum NP is Hard for PH , 1998 .

[3]  H. S. Allen The Quantum Theory , 1928, Nature.

[4]  Uwe Schöning The power of counting , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[5]  J. Tor,et al.  Complexity classesde ned by counting quanti ers * , 1991 .

[6]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[8]  N. S. Barnett,et al.  Private communication , 1969 .

[9]  Lance Fortnow,et al.  Complexity limitations on quantum computation , 1999, J. Comput. Syst. Sci..

[10]  Jacobo Torán,et al.  Complexity classes defined by counting quantifiers , 1991, JACM.

[11]  Jacobo Torr Complexity Classes Deened by Counting Quantiiers* , 2022 .

[12]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[13]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[14]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[15]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[16]  L. Fortnow Counting complexity , 1998 .

[17]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[18]  Stephen A. Fenner,et al.  Gap-deenable Counting Classes , 1991 .

[19]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[20]  Jun Tarui Probablistic Polynomials, AC0 Functions, and the Polynomial-Time Hierarchy , 1993, Theor. Comput. Sci..

[21]  A. Stephen,et al.  Gap-De nable Counting Classes , 1991 .

[22]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[23]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[24]  Stuart A. Kurtz,et al.  Gap-Definable Counting Classes , 1994, J. Comput. Syst. Sci..

[25]  I PaulBenioff Quantum Mechanical Hamiltonian Models of Turing Machines , 1982 .

[26]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  Mitsunori Ogihara,et al.  Counting Classes are at Least as Hard as the Polynomial-Time Hierarchy , 1992, SIAM J. Comput..

[29]  P. Benioff Quantum mechanical hamiltonian models of turing machines , 1982 .

[30]  J. Köbler,et al.  The Graph Isomorphism Problem: Its Structural Complexity , 1993 .

[31]  Gilles Brassard,et al.  The quantum challenge to structural complexity theory , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[32]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.