Three-Dimensional Shapes of Spinning Helium Nanodroplets.
暂无分享,去创建一个
Marcello Coreno | Luca Giannessi | Christian Peltz | Thomas Fennel | Riccardo Cucini | Thomas Möller | Marcel Drabbels | Carlo Callegari | Paolo Piseri | Toshiyuki Nishiyama | Julian Zimmermann | Bruno Langbehn | Michele Di Fraia | Paola Finetti | Aaron C LaForge | Yevheniy Ovcharenko | Oksana Plekan | Kevin C Prince | Frank Stienkemeier | Kiyoshi Ueda | Daniela Rupp | T. Möller | D. Rupp | K. Prince | A. LaForge | C. Callegari | M. Coreno | M. Drabbels | P. Finetti | C. Grazioli | Y. Ovcharenko | P. Piseri | O. Plekan | F. Stienkemeier | L. Giannessi | K. Ueda | T. Fennel | C. Peltz | T. Nishiyama | R. Cucini | Cesare Grazioli | Katharina Sander | Andrew Clark | Denys Iablonskyi | Verónica Oliver Álvarez de Lara | M. Di Fraia | B. Langbehn | A. Clark | D. Iablonskyi | Julian Zimmermann | V. Oliver Álvarez de Lara | K. Sander
[1] William A. Barletta,et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet , 2012, Nature Photonics.
[2] W. Marsden. I and J , 2012 .
[3] J. Khoury,et al. Phenomenological consequences of superfluid dark matter with baryon-phonon coupling , 2017, Journal of Cosmology and Astroparticle Physics.
[4] Kyle A. Baldwin,et al. Artificial tektites: an experimental technique for capturing the shapes of spinning drops , 2014, Scientific Reports.
[5] des lettres et des beaux-arts de Belgique.,et al. Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles. , 1827 .
[6] 장윤희,et al. Y. , 2003, Industrial and Labor Relations Terms.
[7] J. Schäfer,et al. Implementierung und Anwendung analytischer und numerischer Verfahren zur Lösung der Maxwellgleichungen für die Untersuchung der Lichtausbreitung in biologischem Gewebe , 2011 .
[8] U. Even,et al. Rapidly pulsed helium droplet source. , 2009, The Review of scientific instruments.
[9] Tilman Pfau,et al. Self-bound droplets of a dilute magnetic quantum liquid , 2016, Nature.
[10] Trinh,et al. Shapes of rotating free drops: Spacelab experimental results. , 1986, Physical review letters.
[11] Thomas Möller,et al. Generation and structure of extremely large clusters in pulsed jets. , 2014, The Journal of chemical physics.
[12] A. Falcon. Physics I.1 , 2018 .
[13] R. Packard,et al. Photographs of quantized vortex lines in rotating He II , 1974 .
[14] Antonio-José Almeida,et al. NAT , 2019, Springer Reference Medizin.
[15] S. Stringari,et al. Density of states and evaporation rate of helium clusters , 1990 .
[16] S. Marchesini,et al. Aerosol Imaging with a Soft X-Ray Free Electron Laser , 2010 .
[17] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .
[18] P. Bogdanovich,et al. Atomic Data and Nuclear Data Tables , 2013 .
[19] Garth J. Williams,et al. Single mimivirus particles intercepted and imaged with an X-ray laser , 2011, Nature.
[20] B. L. Henke,et al. X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .
[21] Marcello Coreno,et al. A modular end-station for atomic, molecular, and cluster science at the low density matter beamline of FERMI@Elettra , 2013 .
[22] Claus-Justus Heine,et al. Computations of form and stability of rotating drops with finite elements , 2006 .
[23] Subrahmanyan Chandrasekhar,et al. The stability of a rotating liquid drop , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[24] R. Donnelly,et al. Vortex configurations in a freely rotating superfluid drop , 1995 .
[25] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[26] Y. Inubushi,et al. Electron spectroscopy of rare-gas clusters irradiated by x-ray free-electron laser pulses from SACLA , 2016 .
[27] P. Barber. Absorption and scattering of light by small particles , 1984 .
[28] Stephen R. Leone,et al. Shapes and vorticities of superfluid helium nanodroplets , 2014, Science.
[29] Nicola Mahne,et al. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering , 2016, Nature Communications.
[30] J. Toennies,et al. Electron capture by large helium droplets , 1998 .
[31] W. Swiatecki,et al. Equilibrium configurations of rotating charged or gravitating liquid masses with surface tension. II , 1974 .
[32] R. A. Brown,et al. The shape and stability of rotating liquid drops , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[33] Luca Poletto,et al. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source , 2016, Nature Communications.
[34] Ericka Stricklin-Parker,et al. Ann , 2005 .
[35] S. Marchesini,et al. X-ray image reconstruction from a diffraction pattern alone , 2003, physics/0306174.
[36] H. N. Chapman,et al. Imaging Atomic Structure and Dynamics with Ultrafast X-ray Scattering , 2007, Science.
[37] Christoph Bostedt,et al. Clusters in intense FLASH pulses: ultrafast ionization dynamics and electron emission studied with spectroscopic and scattering techniques , 2010 .
[38] Christian Peltz,et al. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering , 2015, Nature Communications.
[39] M. Pi,et al. Vortex arrays in nanoscopic superfluid helium droplets , 2015, 1501.06348.
[40] C. Bostedt,et al. Identification of twinned gas phase clusters by single-shot scattering with intense soft x-ray pulses , 2012 .
[41] Marcello Coreno,et al. The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning , 2015, Journal of synchrotron radiation.
[42] A. Lucas,et al. Theoretical interpretation of the vacuum ultraviolet reflectance of liquid helium and of the absorption spectra of helium microbubbles in aluminum , 1983 .
[43] S. Carron,et al. Coupled Motion of Xe Clusters and Quantum Vortices in He Nanodroplets , 2016 .
[44] C. Bostedt,et al. Ultrafast x-ray scattering of xenon nanoparticles: imaging transient states of matter. , 2012, Physical review letters.
[45] V. Cardoso. The many shapes of spinning drops , 2008 .
[46] W. Steen. Absorption and Scattering of Light by Small Particles , 1999 .
[47] J. Lattimer,et al. The Physics of Neutron Stars , 2004, Science.
[48] J. Khoury,et al. Theory of dark matter superfluidity , 2015, 1507.01019.
[49] Georg Weidenspointner,et al. Femtosecond X-ray protein nanocrystallography , 2011, Nature.
[50] D. Jones,et al. Gravitational wave emission from rotating superfluid neutron stars , 2009, 0909.4035.
[51] E. Knuth,et al. Average size and size distribution of large droplets produced in a free-jet expansion of a liquid , 1999 .
[52] F. Maia. The Coherent X-ray Imaging Data Bank , 2012, Nature Methods.
[53] S. Carron,et al. Communication: X-ray coherent diffractive imaging by immersion in nanodroplets , 2015, Structural dynamics.
[54] S. Carron,et al. Shapes of rotating superfluid helium nanodroplets , 2017 .
[55] P. Murdin. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .
[56] Tsuyoshi Murata,et al. {m , 1934, ACML.
[57] I. Pócsik. Lognormal distribution as the natural statistics of cluster systems , 1991 .
[58] E. Pedersoli,et al. Pulse Duration of Seeded Free-Electron Lasers , 2017 .
[59] R J A Hill,et al. Nonaxisymmetric shapes of a magnetically levitated and spinning water droplet. , 2008, Physical review letters.
[60] J. Northby,et al. Mass spectra and time‐of‐flight distributions of helium cluster beams , 1990 .