Three-Dimensional Shapes of Spinning Helium Nanodroplets.

A significant fraction of superfluid helium nanodroplets produced in a free-jet expansion has been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating helium nanodroplets up to large scattering angles using intense extreme ultraviolet light pulses from the FERMI free-electron laser. Distinct asymmetric features in the wide-angle diffraction patterns enable the unique and systematic identification of the three-dimensional droplet shapes. The analysis of a large data set allows us to follow the evolution from axisymmetric oblate to triaxial prolate and two-lobed droplets. We find that the shapes of spinning superfluid helium droplets exhibit the same stages as classical rotating droplets while the previously reported metastable, oblate shapes of quantum droplets are not observed. Our three-dimensional analysis represents a valuable landmark for clarifying the interrelation between morphology and superfluidity on the nanometer scale.

[1]  William A. Barletta,et al.  Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet , 2012, Nature Photonics.

[2]  W. Marsden I and J , 2012 .

[3]  J. Khoury,et al.  Phenomenological consequences of superfluid dark matter with baryon-phonon coupling , 2017, Journal of Cosmology and Astroparticle Physics.

[4]  Kyle A. Baldwin,et al.  Artificial tektites: an experimental technique for capturing the shapes of spinning drops , 2014, Scientific Reports.

[5]  des lettres et des beaux-arts de Belgique.,et al.  Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles. , 1827 .

[6]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[7]  J. Schäfer,et al.  Implementierung und Anwendung analytischer und numerischer Verfahren zur Lösung der Maxwellgleichungen für die Untersuchung der Lichtausbreitung in biologischem Gewebe , 2011 .

[8]  U. Even,et al.  Rapidly pulsed helium droplet source. , 2009, The Review of scientific instruments.

[9]  Tilman Pfau,et al.  Self-bound droplets of a dilute magnetic quantum liquid , 2016, Nature.

[10]  Trinh,et al.  Shapes of rotating free drops: Spacelab experimental results. , 1986, Physical review letters.

[11]  Thomas Möller,et al.  Generation and structure of extremely large clusters in pulsed jets. , 2014, The Journal of chemical physics.

[12]  A. Falcon Physics I.1 , 2018 .

[13]  R. Packard,et al.  Photographs of quantized vortex lines in rotating He II , 1974 .

[14]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[15]  S. Stringari,et al.  Density of states and evaporation rate of helium clusters , 1990 .

[16]  S. Marchesini,et al.  Aerosol Imaging with a Soft X-Ray Free Electron Laser , 2010 .

[17]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[18]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[19]  Garth J. Williams,et al.  Single mimivirus particles intercepted and imaged with an X-ray laser , 2011, Nature.

[20]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[21]  Marcello Coreno,et al.  A modular end-station for atomic, molecular, and cluster science at the low density matter beamline of FERMI@Elettra , 2013 .

[22]  Claus-Justus Heine,et al.  Computations of form and stability of rotating drops with finite elements , 2006 .

[23]  Subrahmanyan Chandrasekhar,et al.  The stability of a rotating liquid drop , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  R. Donnelly,et al.  Vortex configurations in a freely rotating superfluid drop , 1995 .

[25]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[26]  Y. Inubushi,et al.  Electron spectroscopy of rare-gas clusters irradiated by x-ray free-electron laser pulses from SACLA , 2016 .

[27]  P. Barber Absorption and scattering of light by small particles , 1984 .

[28]  Stephen R. Leone,et al.  Shapes and vorticities of superfluid helium nanodroplets , 2014, Science.

[29]  Nicola Mahne,et al.  Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering , 2016, Nature Communications.

[30]  J. Toennies,et al.  Electron capture by large helium droplets , 1998 .

[31]  W. Swiatecki,et al.  Equilibrium configurations of rotating charged or gravitating liquid masses with surface tension. II , 1974 .

[32]  R. A. Brown,et al.  The shape and stability of rotating liquid drops , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[33]  Luca Poletto,et al.  Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source , 2016, Nature Communications.

[34]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[35]  S. Marchesini,et al.  X-ray image reconstruction from a diffraction pattern alone , 2003, physics/0306174.

[36]  H. N. Chapman,et al.  Imaging Atomic Structure and Dynamics with Ultrafast X-ray Scattering , 2007, Science.

[37]  Christoph Bostedt,et al.  Clusters in intense FLASH pulses: ultrafast ionization dynamics and electron emission studied with spectroscopic and scattering techniques , 2010 .

[38]  Christian Peltz,et al.  The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering , 2015, Nature Communications.

[39]  M. Pi,et al.  Vortex arrays in nanoscopic superfluid helium droplets , 2015, 1501.06348.

[40]  C. Bostedt,et al.  Identification of twinned gas phase clusters by single-shot scattering with intense soft x-ray pulses , 2012 .

[41]  Marcello Coreno,et al.  The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning , 2015, Journal of synchrotron radiation.

[42]  A. Lucas,et al.  Theoretical interpretation of the vacuum ultraviolet reflectance of liquid helium and of the absorption spectra of helium microbubbles in aluminum , 1983 .

[43]  S. Carron,et al.  Coupled Motion of Xe Clusters and Quantum Vortices in He Nanodroplets , 2016 .

[44]  C. Bostedt,et al.  Ultrafast x-ray scattering of xenon nanoparticles: imaging transient states of matter. , 2012, Physical review letters.

[45]  V. Cardoso The many shapes of spinning drops , 2008 .

[46]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[47]  J. Lattimer,et al.  The Physics of Neutron Stars , 2004, Science.

[48]  J. Khoury,et al.  Theory of dark matter superfluidity , 2015, 1507.01019.

[49]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[50]  D. Jones,et al.  Gravitational wave emission from rotating superfluid neutron stars , 2009, 0909.4035.

[51]  E. Knuth,et al.  Average size and size distribution of large droplets produced in a free-jet expansion of a liquid , 1999 .

[52]  F. Maia The Coherent X-ray Imaging Data Bank , 2012, Nature Methods.

[53]  S. Carron,et al.  Communication: X-ray coherent diffractive imaging by immersion in nanodroplets , 2015, Structural dynamics.

[54]  S. Carron,et al.  Shapes of rotating superfluid helium nanodroplets , 2017 .

[55]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[56]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[57]  I. Pócsik Lognormal distribution as the natural statistics of cluster systems , 1991 .

[58]  E. Pedersoli,et al.  Pulse Duration of Seeded Free-Electron Lasers , 2017 .

[59]  R J A Hill,et al.  Nonaxisymmetric shapes of a magnetically levitated and spinning water droplet. , 2008, Physical review letters.

[60]  J. Northby,et al.  Mass spectra and time‐of‐flight distributions of helium cluster beams , 1990 .