Tectonic evolution of syn- to late-orogenic sedimentary–volcanic basins in the central Norwegian Caledonides

We present new structural, geochemical and U–Pb zircon data from syn- to late-orogenic sedimentary–volcanic basins in the southwestern part of the Trondheim Nappe Complex, central Norwegian Caledonides. In this area, a succession of enriched mid-ocean ridge basalt type metabasalt, jasper, ribbon chert with associated sandstone and conglomerate, and green siltstone is interpreted to represent volcanism and sedimentation in a hitherto little-known spreading-dominated tectonic environment. This environment is different from the suprasubduction-zone ophiolite setting dominating the Iapetus rock record elsewhere in the Scandinavian Caledonides. This volcanic and sedimentary succession was overturned and isoclinally folded in a pre-427 Ma orogenic phase. Post-427 Ma cross-bedded sandstones were deposited on the eroded surface of the previously deformed rocks, representing a rare example of a late Silurian or younger sedimentary basin within the Scandinavian Caledonides. The cross-bedded sandstones are intercalated with and/or overlain by post-427 Ma intermediate volcanic or subvolcanic rocks of calc-alkaline composition, representing a hitherto unknown volcanic phase within the Trondheim Nappe Complex and elsewhere within the Scandinavian Caledonides. Their particular geochemical signature could be the result of late-stage subduction-zone volcanism just prior to the onset of continent–continent collision between Baltica and Laurentia, or much younger post-collisional extensional melting with inherited subduction signatures. Supplementary material: A description of analytical methods and a table of geochronological data from LA-ICP-MS analysis of zircons are available at https://doi.org/10.6084/m9.figshare.c.3994605.

[1]  A. Greer the Early , 2022, Renaissance Quarterly.

[2]  T. Grenne,et al.  The Støren Group greenstones and their relationship to the ophiolite fragments of the western Trondheim Nappe Complex, central Norwegian Caledonides , 2017 .

[3]  R. Strachan,et al.  U–Pb zircon geochronology and geodynamic significance of ‘Newer Granite’ plutons in Shetland, northernmost Scottish Caledonides , 2017, Journal of the Geological Society.

[4]  M. Domeier A plate tectonic scenario for the Iapetus and Rheic oceans , 2016 .

[5]  C. Hawkesworth,et al.  Tectonic controls on post-subduction granite genesis and emplacement: The late Caledonian suite of Britain and Ireland , 2016 .

[6]  Mandy Berg Principles Of Igneous And Metamorphic Petrology , 2016 .

[7]  S. Boggs Principles of Sedimentology and Stratigraphy , 2016 .

[8]  Y. Niu,et al.  Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective , 2015, Science China Earth Sciences.

[9]  A. Kylander‐Clark,et al.  Age and significance of felsic dikes from the UHP western gneiss region , 2014 .

[10]  F. Corfu,et al.  New Perspectives on the Caledonides of Scandinavia and Related Areas , 2014 .

[11]  F. Corfu,et al.  The Scandinavian Caledonides: main features, conceptual advances and critical questions , 2014 .

[12]  A. Ladenberger,et al.  The Baltoscandian margin detrital zircon signatures of the central Scandes , 2013 .

[13]  T. Andersen,et al.  Tectonomagmatic evolution of the Early Ordovician suprasubduction-zone ophiolites of the Trondheim Region, Mid-Norwegian Caledonides , 2013 .

[14]  John Wheeler,et al.  STRUCTURAL GEOLOGY ALGORITHMS: VECTORS AND TENSORS , 2013 .

[15]  C. Teyssier,et al.  U-Pb dates and trace-element geochemistry of zircon from migmatite, Western Gneiss Region, Norway: Significance for history of partial melting in continental subduction , 2013 .

[16]  Richard W. Allmendinger,et al.  Spherical projections with OSXStereonet , 2013, Comput. Geosci..

[17]  H. Furnes,et al.  Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere , 2011 .

[18]  F. Corfu,et al.  Age and significance of Grenvillian and Silurian orogenic events in the Finnmarkian Caledonides, northern NorwayThis article is one of a series of papers published in this Special Issue on the theme of Geochronology in honour of Tom Krogh. , 2011 .

[19]  G. Gehrels,et al.  Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database , 2009 .

[20]  D. Bruton,et al.  Brachiopods and trilobites from the Ordovician Lower Hovin Group ( Arenig / Llanvirn ) , Helonda area , Trondheim Region , Norway : new and revised taxa and paleogeographic interpretation , 2009 .

[21]  H. Fossen,et al.  From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland , 2008 .

[22]  Dunning,et al.  U-Pb age dating and paleotectonic significance of trondhjemite from the type locality in the Central Norwegian Caledonides , 2008 .

[23]  Calvin G. Barnes,et al.  Timing of sedimentation, metamorphism, and plutonism in the Helgeland Nappe Complex, north-central Norwegian Caledonides , 2007 .

[24]  T. Grenne Magmatic evolution of the Løkken SSZ Ophiolite, Norwegian Caledonides: Relationships between anomalous lavas and high-level intrusions , 2007 .

[25]  F. Corfu,et al.  Silurian gabbro-diorite-trondhjemite plutons in the Trondheim Nappe Complex, Caledonides, Norway: petrology and U-Pb geochronology , 2007 .

[26]  P. Turner,et al.  Trace Fossils and Paleoenvironments of a Late Silurian Marginal-Marine/Alluvial System: the Ringerike Group (Lower Old Red Sandstone), Oslo Region, Norway , 2006 .

[27]  P. Turner,et al.  A revised stratigraphy for the Ringerike Group (Upper Silurian, Oslo Region) , 2005 .

[28]  D. Roberts The Scandinavian Caledonides: event chronology, palaeogeographic settings and likely modern analogues , 2003 .

[29]  F. M. Vokes,et al.  Scandinavian Caledonide Metallogeny in a plate tectonic perspective , 1999 .

[30]  D. Roberts,et al.  The Hølonda Porphyrites, Norwegian Caledonides: geochemistry and tectonic setting of Early–Mid-Ordovician shoshonitic volcanism , 1998, Journal of the Geological Society.

[31]  B. Pluijm,et al.  Ordovician paleogeography and the evolution of the Iapetus ocean , 1997 .

[32]  D. Bruton,et al.  Fossils from the Ordovician 'Upper Hovin Group' (Caradoc-Ashgill), Trondheim Region, Norway , 1997 .

[33]  D. Harper,et al.  The palaeogeography of early Ordovician Iapetus terranes: an integration of faunal and palaeomagnetic constraints , 1996 .

[34]  H. Fossen The role of extensional tectonics in the Caledonides of south Norway , 1992 .

[35]  H. Furnes,et al.  Ordovician faunas, island arcs and ophiolites in the Scandinavian Caledonides , 1992 .

[36]  A. Trench,et al.  The Ordovician history of the Iapetus Ocean in Britain: new palaeomagnetic constraints , 1991, Journal of the Geological Society.

[37]  N. Woodcock,et al.  Silurian collision and sediment dispersal patterns in southern Britain , 1990, Geological Magazine.

[38]  A. Saunders,et al.  Magmatism in the Ocean Basins , 1989 .

[39]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[40]  R. Pedersen,et al.  U/Pb ages of ophiolites and arc-related plutons of the Norwegian Caledonides: implications for the development of Iapetus , 1988 .

[41]  R. W. Le Maitre,et al.  A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram , 1986 .

[42]  A. Tindle,et al.  Geochemical characteristics of collision-zone magmatism , 1986, Geological Society, London, Special Publications.

[43]  B. Murchey,et al.  Geologic Significance of Paleozoic and Mesozoic Radiolarian Chert , 1986 .

[44]  W. D. Nesse,et al.  Introduction to optical mineralogy , 1986 .

[45]  D. Gee,et al.  The Caledonide orogen : Scandinavia and related areas , 1985 .

[46]  R. B. Neuman Geology and paleobiology of islands in the Ordovician Iapetus Ocean: Review and implications , 1984 .

[47]  P. Ryan,et al.  Ordovician marginal basin development in the central Norwegian Caledonides , 1984, Geological Society, London, Special Publications.

[48]  B. P. Kokelaar,et al.  Marginal basin geology : volcanic and associated sedimentary and tectonic processes in modern and ancient marginal basins , 1984 .

[49]  C. Hawkesworth,et al.  Continental Basalts and Mantle Xenoliths , 1983 .

[50]  J. Pearce The role of sub-continental lithosphere in magma genesis at destructive plate margins. , 1983 .

[51]  Julian A. Pearce,et al.  Trace element characteristics of lavas from destructive plate boundaries , 1982 .

[52]  R. Thorpe Andesites: Orogenic Andesites and Related Rocks , 1982 .

[53]  D. Roberts,et al.  Tectonostratigraphic development of the Trondheim region Caledonides, Central Norway , 1981 .

[54]  David A. Wood,et al.  The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province , 1980 .

[55]  R. Nicholson The Scandinavian Caledonides , 1974 .

[56]  Julian A. Pearce,et al.  Tectonic setting of basic volcanic rocks determined using trace element analyses , 1973 .

[57]  W. B. Harland,et al.  The Arctic Caledonides and earlier Oceans , 1972, Geological Magazine.

[58]  E. Rohr-Torp A Major Inversion of the Western Part of the Trondheim Nappe , 1972 .

[59]  J. Wilson,et al.  Did the Atlantic Close and then Re-Open? , 1966, Nature.

[60]  O. Holtedahl Paleogeography and diastrophism in the Atlantic-Arctic region during Paleozoic time , 1920 .