Optimal Control of Transient Dynamics in Balanced Networks Supports Generation of Complex Movements

[1]  Balanced Amplification: A New Mechanism of Selective Amplification of Neural Activity Patterns , 2016, Neuron.

[2]  W. Wildman,et al.  Theoretical Neuroscience , 2014 .

[3]  Srdjan Ostojic,et al.  Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons , 2014, Nature Neuroscience.

[4]  Wolfgang Maass,et al.  Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning. , 2014, Cerebral cortex.

[5]  Stephen I. Ryu,et al.  Neural Dynamics of Reaching following Incorrect or Absent Motor Preparation , 2014, Neuron.

[6]  Dean V. Buonomano,et al.  ROBUST TIMING AND MOTOR PATTERNS BY TAMING CHAOS IN RECURRENT NEURAL NETWORKS , 2012, Nature Neuroscience.

[7]  M. Carandini,et al.  Inhibition dominates sensory responses in awake cortex , 2012, Nature.

[8]  Kenneth D. Miller,et al.  Analysis of the Stabilized Supralinear Network , 2012, Neural Computation.

[9]  L. Abbott,et al.  Two layers of neural variability , 2012, Nature Neuroscience.

[10]  A. Litwin-Kumar,et al.  Slow dynamics and high variability in balanced cortical networks with clustered connections , 2012, Nature Neuroscience.

[11]  D. Buonomano,et al.  Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control , 2012, 1210.2104.

[12]  D. Kullmann,et al.  Plasticity of Inhibition , 2012, Neuron.

[13]  H. Umemori,et al.  Specific Sets of Intrinsic and Extrinsic Factors Drive Excitatory and Inhibitory Circuit Formation , 2012, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[14]  Matthew W Self,et al.  Different glutamate receptors convey feedforward and recurrent processing in macaque V1 , 2012, Proceedings of the National Academy of Sciences.

[15]  Matthew T. Kaufman,et al.  Neural population dynamics during reaching , 2012, Nature.

[16]  W. Gerstner,et al.  Non-normal amplification in random balanced neuronal networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Yotam Luz,et al.  Balancing Feed-Forward Excitation and Inhibition via Hebbian Inhibitory Synaptic Plasticity , 2012, PLoS Comput. Biol..

[18]  Kenneth D. Miller,et al.  Mathematical Equivalence of Two Common Forms of Firing Rate Models of Neural Networks , 2012, Neural Computation.

[19]  Henning Sprekeler,et al.  Inhibitory Plasticity Balances Excitation and Inhibition in Sensory Pathways and Memory Networks , 2011, Science.

[20]  Byron M. Yu,et al.  Single-Trial Neural Correlates of Arm Movement Preparation , 2011, Neuron.

[21]  M. Häusser,et al.  Synaptic Integration Gradients in Single Cortical Pyramidal Cell Dendrites , 2011, Neuron.

[22]  Maneesh Sahani,et al.  A dynamical systems view of motor preparation: implications for neural prosthetic system design. , 2011, Progress in brain research.

[23]  Matthew T. Kaufman,et al.  Cortical Preparatory Activity: Representation of Movement or First Cog in a Dynamical Machine? , 2010, Neuron.

[24]  F. Rieke,et al.  Noise correlations improve response fidelity and stimulus encoding , 2010, Nature.

[25]  Christoph E. Schreiner,et al.  Developmental sensory experience balances cortical excitation and inhibition , 2010, Nature.

[26]  P. Dayan,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 References the Asynchronous State in Cortical Circuits , 2022 .

[27]  L. Abbott,et al.  Stimulus-dependent suppression of chaos in recurrent neural networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Alexander S. Ecker,et al.  Decorrelated Neuronal Firing in Cortical Microcircuits , 2010, Science.

[29]  L. F. Abbott,et al.  Generating Coherent Patterns of Activity from Chaotic Neural Networks , 2009, Neuron.

[30]  Evan S. Schaffer,et al.  Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression , 2009, Neuron.

[31]  L.F. Abbott,et al.  Gating Multiple Signals through Detailed Balance of Excitation and Inhibition in Spiking Networks , 2009, Nature Neuroscience.

[32]  Wim Michiels,et al.  The Smoothed Spectral Abscissa for Robust Stability Optimization , 2009, SIAM J. Optim..

[33]  Surya Ganguli,et al.  Memory traces in dynamical systems , 2008, Proceedings of the National Academy of Sciences.

[34]  Stefan Rotter,et al.  Correlations and Population Dynamics in Cortical Networks , 2008, Neural Computation.

[35]  Michael Okun,et al.  Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities , 2008, Nature Neuroscience.

[36]  C. Schreiner,et al.  A synaptic memory trace for cortical receptive field plasticity , 2007, Nature.

[37]  K. Shenoy,et al.  Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex. , 2007, Journal of neurophysiology.

[38]  L. Abbott,et al.  Eigenvalue spectra of random matrices for neural networks. , 2006, Physical review letters.

[39]  Tim P Vogels,et al.  Signal Propagation and Logic Gating in Networks of Integrate-and-Fire Neurons , 2005, The Journal of Neuroscience.

[40]  Markus Diesmann,et al.  Advancing the Boundaries of High-Connectivity Network Simulation with Distributed Computing , 2005, Neural Computation.

[41]  L. Abbott,et al.  Neural network dynamics. , 2005, Annual review of neuroscience.

[42]  M. Sur,et al.  Invariant computations in local cortical networks with balanced excitation and inhibition , 2005, Nature Neuroscience.

[43]  Peter E. Latham,et al.  Computing and Stability in Cortical Networks , 2004, Neural Computation.

[44]  Haim Sompolinsky,et al.  Patterns of Ongoing Activity and the Functional Architecture of the Primary Visual Cortex , 2004, Neuron.

[45]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[46]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[47]  Xiao-Jing Wang,et al.  Probabilistic Decision Making by Slow Reverberation in Cortical Circuits , 2002, Neuron.

[48]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[49]  Wulfram Gerstner,et al.  Spiking Neuron Models: Single Neurons, Populations, Plasticity , 2002 .

[50]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[51]  B. McNaughton,et al.  Paradoxical Effects of External Modulation of Inhibitory Interneurons , 1997, The Journal of Neuroscience.

[52]  D. Amit,et al.  Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. , 1997, Cerebral cortex.

[53]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[54]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. Amit Modelling Brain Function: The World of Attractor Neural Networks , 1989 .

[56]  Sommers,et al.  Chaos in random neural networks. , 1988, Physical review letters.

[57]  Tongxing Lu Solution of the matrix equation AX-XB=C , 1986, Computing.

[58]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[59]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.