Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices

Poroelastic models arise in reservoir modeling and many other important applications. Under certain assumptions, they involve a time-dependent coupled system consisting of Navier–Lamé equations for the displacements, Darcy’s flow equation for the fluid velocity and a divergence constraint equation. Stability for infinite time of the continuous problem and, second and third order accurate, time discretized equations are shown. Methods to handle the lack of regularity at initial times are discussed and illustrated numerically. After discretization, at each time step this leads to a block matrix system in saddle point form. Mixed space discretization methods and a regularization method to stabilize the system and avoid locking in the pressure variable are presented. A certain block matrix preconditioner is shown to cluster the eigenvalues of the preconditioned matrix about the unit value but needs inner iterations for certain matrix blocks. The strong clustering leads to very few outer iterations. Various approaches to construct preconditioners are presented and compared. The sensitivity of the number of outer iterations to the stopping accuracy of the inner iterations is illustrated numerically.

[1]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[2]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[3]  M. Wheeler,et al.  Finite element methods in linear poroelasticity: theoretical and computational results , 2005 .

[4]  M. Biot,et al.  THE ELASTIC COEFFICIENTS OF THE THEORY OF CONSOLIDATION , 1957 .

[5]  Owe Axelsson,et al.  Preconditioning of Boundary Value Problems Using Elementwise Schur Complements , 2009, SIAM J. Matrix Anal. Appl..

[6]  O. Axelsson Iterative solution methods , 1995 .

[7]  L. Petzold Order results for implicit Runge-Kutta methods applied to differential/algebraic systems , 1986 .

[8]  A. Quarteroni,et al.  Navier-Stokes/Darcy Coupling: Modeling, Analysis, and Numerical Approximation , 2009 .

[9]  C. W. Gear,et al.  ODE METHODS FOR THE SOLUTION OF DIFFERENTIAL/ALGEBRAIC SYSTEMS , 1984 .

[10]  Abimael F. D. Loula,et al.  On stability and convergence of finite element approximations of biot's consolidation problem , 1994 .

[11]  Owe Axelsson,et al.  A class ofA-stable methods , 1969 .

[12]  Owe Axelsson,et al.  On the solution of high order stable time integration methods , 2013 .

[13]  Vidar Thomée,et al.  Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem , 1996 .

[14]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[15]  Owe Axelsson,et al.  On iterative solvers in structural mechanics; separate displacement orderings and mixed variable methods , 1999 .

[16]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[17]  Hans Petter Langtangen,et al.  Efficient block preconditioners for the coupled equations of pressure and deformation in highly discontinuous media , 2011 .

[18]  Owe Axelsson,et al.  Preconditioners for regularized saddle point matrices , 2011, J. Num. Math..

[19]  S. Torquato Random Heterogeneous Materials , 2002 .

[20]  Kunio Tanabe,et al.  Upper and lower bounds for the arithmetic-geometric-harmonic means of positive definite matrices , 1994 .

[21]  O. Axelsson Solving the Stokes problem on a massively parallel computer , 1999 .

[22]  J. Butcher Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[23]  M. Biot THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID , 1955 .

[24]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[25]  Hans Peter Helfrich,et al.  Fehlerabschätzungen für das Galerkinverfahren zur Lösung von Evolutionsgleichungen , 1974 .

[26]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[27]  O. Axelsson On the efficiency of a class of a-stable methods , 1974 .

[28]  Mary F. Wheeler,et al.  Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach , 2009 .

[29]  Joachim Berdal Haga,et al.  On the causes of pressure oscillations in low‐permeable and low‐compressible porous media , 2012 .

[30]  Owe Axelsson,et al.  Stability and error estimates for the $\theta$-method for strongly monotone and infinitely stiff evolution equations , 2001, Numerische Mathematik.

[31]  Yu Kuznetsov,et al.  A new multilevel algebraic preconditioner for the diffusion equation in heterogeneous media , 2010, Numer. Linear Algebra Appl..

[32]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[33]  A. Cheng,et al.  Fundamentals of Poroelasticity , 1993 .

[34]  Peter Arbenz,et al.  Preconditioning for Large Scale Micro Finite Element Analyses of 3D Poroelasticity , 2012, PARA.

[35]  Nicola Castelletto,et al.  A fully coupled 3-D mixed finite element model of Biot consolidation , 2010, J. Comput. Phys..

[36]  Hans Petter Langtangen,et al.  A parallel block preconditioner for large-scale poroelasticity with highly heterogeneous material parameters , 2012, Computational Geosciences.

[37]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[38]  Owe Axelsson,et al.  Preconditioning of matrices partitioned in 2 × 2 block form: eigenvalue estimates and Schwarz DD for mixed FEM , 2010, Numer. Linear Algebra Appl..

[39]  I. Babuska Error-bounds for finite element method , 1971 .

[40]  R. Showalter Diffusion in Poro-Elastic Media , 2000 .