O A ] 3 O ct 2 00 8 Quantum isometry groups of the Podles Spheres by
暂无分享,去创建一个
[1] Debashish Goswami,et al. Quantum Group of Orientation preserving Riemannian Isometries , 2008, 0806.3687.
[2] Debashish Goswami,et al. Quantum Isometry Groups: Examples and Computations , 2007, 0707.2648.
[3] Debashish Goswami. Quantum Group of Isometries in Classical and Noncommutative Geometry , 2007, 0704.0041.
[4] G. Landi,et al. Dirac operators on all Podles quantum spheres , 2006, math/0606480.
[5] G. Landi,et al. The Dirac operator on SU_q(2) , 2005 .
[6] G. Landi,et al. The Dirac Operator on SUq(2) , 2004, math/0411609.
[7] T. Banica. Quantum automorphism groups of homogeneous graphs , 2003, math/0311402.
[8] K. Schmuedgen,et al. Dirac operator and a twisted cyclic cocycle on the standard Podles quantum sphere , 2003, math/0305051.
[9] T. Banica. Quantum automorphism groups of small metric spaces , 2003, math/0304025.
[10] P. Chakraborty,et al. Spectral Triples and Associated Connes-de Rham Complex for the Quantum SU(2) and the Quantum Sphere , 2002, math/0210049.
[11] A. Connes. CYCLIC COHOMOLOGY, QUANTUM GROUP SYMMETRIES AND THE LOCAL INDEX FORMULA FOR SUq(2) , 2002, Journal of the Institute of Mathematics of Jussieu.
[12] Debashish Goswami. TWISTED ENTIRE CYCLIC COHOMOLOGY, J-L-O COCYCLES AND EQUIVARIANT SPECTRAL TRIPLES , 2002, math-ph/0204010.
[13] P. Chakraborty,et al. Equivariant spectral triples on the quantum SU(2) group , 2002, math/0201004.
[14] Debashish Goswami. Some Noncommutative Geometric Aspects of SU_q(2) , 2001, math-ph/0108003.
[15] A. Connes,et al. Institute for Mathematical Physics Noncommutative Finite–dimensional Manifolds Spherical Manifolds and Related Examples Noncommutative Finite-dimensional Manifolds I. Spherical Manifolds and Related Examples , 2022 .
[16] Debashish Goswami,et al. Probability and geometry on some noncommutative manifolds , 2000, math/0012203.
[17] Julien Bichon,et al. Quantum automorphism groups of finite graphs , 1999, math/9902029.
[18] Shuzhou Wang. Ergodic Actions of Universal Quantum Groups on Operator Algebras , 1998, math/9807093.
[19] Shuzhou Wang. Structure and Isomorphism Classification of Compact Quantum Groups A_u(Q) and B_u(Q) , 1998, math/9807095.
[20] J. Fröhlich,et al. Supersymmetric Quantum Theory and Non-Commutative Geometry , 1998, math-ph/9807006.
[21] Shuzhou Wang,et al. Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.
[22] Ann Maes,et al. Notes on Compact Quantum Groups , 1998, math/9803122.
[23] Shuzhou Wang,et al. Free products of compact quantum groups , 1995 .
[24] P. Podlés. Symmetries of quantum spaces. Subgroups and quotient spaces of quantumSU(2) andSO(3) groups , 1994, hep-th/9402069.
[25] S. Woronowicz,et al. Compact matrix pseudogroups , 1987 .
[26] S. Woronowicz. Compact quantum groups , 2000 .
[27] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[28] P. Podleś,et al. Quantum spheres , 1987 .