O A ] 3 O ct 2 00 8 Quantum isometry groups of the Podles Spheres by

For μ ∈ [0, 1], c > 0, We identify the quantum group SOμ(3) as the universal object in the category of compact quantum groups acting ‘by orientation and volume preserving isometries’ in the sense of [8] on the natural spectral triple on the Podles sphere S μc constructed by Dabrowski, D’Andrea, Landi and Wagner in [16]. Moreover, we explicitly compute such universal quantum groups for another class of spectral triples on S μ,c constructed by Chakraborty and Pal ([11]).

[1]  Debashish Goswami,et al.  Quantum Group of Orientation preserving Riemannian Isometries , 2008, 0806.3687.

[2]  Debashish Goswami,et al.  Quantum Isometry Groups: Examples and Computations , 2007, 0707.2648.

[3]  Debashish Goswami Quantum Group of Isometries in Classical and Noncommutative Geometry , 2007, 0704.0041.

[4]  G. Landi,et al.  Dirac operators on all Podles quantum spheres , 2006, math/0606480.

[5]  G. Landi,et al.  The Dirac operator on SU_q(2) , 2005 .

[6]  G. Landi,et al.  The Dirac Operator on SUq(2) , 2004, math/0411609.

[7]  T. Banica Quantum automorphism groups of homogeneous graphs , 2003, math/0311402.

[8]  K. Schmuedgen,et al.  Dirac operator and a twisted cyclic cocycle on the standard Podles quantum sphere , 2003, math/0305051.

[9]  T. Banica Quantum automorphism groups of small metric spaces , 2003, math/0304025.

[10]  P. Chakraborty,et al.  Spectral Triples and Associated Connes-de Rham Complex for the Quantum SU(2) and the Quantum Sphere , 2002, math/0210049.

[11]  A. Connes CYCLIC COHOMOLOGY, QUANTUM GROUP SYMMETRIES AND THE LOCAL INDEX FORMULA FOR SUq(2) , 2002, Journal of the Institute of Mathematics of Jussieu.

[12]  Debashish Goswami TWISTED ENTIRE CYCLIC COHOMOLOGY, J-L-O COCYCLES AND EQUIVARIANT SPECTRAL TRIPLES , 2002, math-ph/0204010.

[13]  P. Chakraborty,et al.  Equivariant spectral triples on the quantum SU(2) group , 2002, math/0201004.

[14]  Debashish Goswami Some Noncommutative Geometric Aspects of SU_q(2) , 2001, math-ph/0108003.

[15]  A. Connes,et al.  Institute for Mathematical Physics Noncommutative Finite–dimensional Manifolds Spherical Manifolds and Related Examples Noncommutative Finite-dimensional Manifolds I. Spherical Manifolds and Related Examples , 2022 .

[16]  Debashish Goswami,et al.  Probability and geometry on some noncommutative manifolds , 2000, math/0012203.

[17]  Julien Bichon,et al.  Quantum automorphism groups of finite graphs , 1999, math/9902029.

[18]  Shuzhou Wang Ergodic Actions of Universal Quantum Groups on Operator Algebras , 1998, math/9807093.

[19]  Shuzhou Wang Structure and Isomorphism Classification of Compact Quantum Groups A_u(Q) and B_u(Q) , 1998, math/9807095.

[20]  J. Fröhlich,et al.  Supersymmetric Quantum Theory and Non-Commutative Geometry , 1998, math-ph/9807006.

[21]  Shuzhou Wang,et al.  Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.

[22]  Ann Maes,et al.  Notes on Compact Quantum Groups , 1998, math/9803122.

[23]  Shuzhou Wang,et al.  Free products of compact quantum groups , 1995 .

[24]  P. Podlés Symmetries of quantum spaces. Subgroups and quotient spaces of quantumSU(2) andSO(3) groups , 1994, hep-th/9402069.

[25]  S. Woronowicz,et al.  Compact matrix pseudogroups , 1987 .

[26]  S. Woronowicz Compact quantum groups , 2000 .

[27]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[28]  P. Podleś,et al.  Quantum spheres , 1987 .