Generative AI in mobile networks: a survey

[1]  C. Tzafestas,et al.  A long distance telesurgical demonstration on robotic surgery phantoms over 5G , 2023, International journal of computer assisted radiology and surgery.

[2]  M. Bucholc,et al.  An Empirical Analysis of State-of-Art Classification Models in an IT Incident Severity Prediction Framework , 2023, Applied Sciences.

[3]  D. Chandramohan,et al.  Enhanced capsule generative adversarial network for spectrum and energy efficiency of cooperative spectrum prediction framework in cognitive radio network , 2023, Trans. Emerg. Telecommun. Technol..

[4]  Sandra Gómez Canaval,et al.  B5GEMINI: AI-Driven Network Digital Twin , 2022, Sensors.

[5]  Elena L. Glassman,et al.  Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by Large Language Models , 2022, CHI Extended Abstracts.

[6]  João Paulo Papa,et al.  A survey on text generation using generative adversarial networks , 2021, Pattern Recognit..

[7]  Xiuqing Lu,et al.  Semantics aware adversarial malware examples generation for black-box attacks , 2021, Appl. Soft Comput..

[8]  D. Wagg,et al.  On generative models as the basis for digital twins , 2021, Data-Centric Engineering.

[9]  Selim Ickin,et al.  Recommending Changes on QoE Factors with Conditional Variational AutoEncoder , 2021, FlexNets@SIGCOMM.

[10]  Hao Wu,et al.  Boosting Offline Reinforcement Learning with Residual Generative Modeling , 2021, IJCAI.

[11]  Ji-Rong Wen,et al.  Pretrained Language Models for Text Generation: A Survey , 2021, ArXiv.

[12]  Linning Peng,et al.  Generative adversarial network-based rogue device identification using differential constellation trace figure , 2021, EURASIP Journal on Wireless Communications and Networking.

[13]  Ari S. Morcos,et al.  ConViT: improving vision transformers with soft convolutional inductive biases , 2021, ICML.

[14]  Ali Borji,et al.  Pros and Cons of GAN Evaluation Measures: New Developments , 2021, Comput. Vis. Image Underst..

[15]  Arcot Sowmya,et al.  Video Generative Adversarial Networks: A Review , 2020, ACM Comput. Surv..

[16]  Muhammad Afaq,et al.  Slicing the Core Network and Radio Access Network Domains through Intent-Based Networking for 5G Networks , 2020, Electronics.

[17]  Benjamin Van Durme,et al.  Which *BERT? A Survey Organizing Contextualized Encoders , 2020, EMNLP.

[18]  Geoffrey Ye Li,et al.  Deep Learning Enabled Semantic Communication Systems , 2020, IEEE Transactions on Signal Processing.

[19]  Neel Sundaresan,et al.  IntelliCode compose: code generation using transformer , 2020, ESEC/SIGSOFT FSE.

[20]  Touseef Iqbal,et al.  The survey: Text generation models in deep learning , 2020, J. King Saud Univ. Comput. Inf. Sci..

[21]  Maryam Rahnemoonfar,et al.  AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network , 2019, Sensors.

[22]  Diederik P. Kingma,et al.  An Introduction to Variational Autoencoders , 2019, Found. Trends Mach. Learn..

[23]  Ali Borji,et al.  Pros and Cons of GAN Evaluation Measures , 2018, Comput. Vis. Image Underst..

[24]  Paul Patras,et al.  ZipNet-GAN: Inferring Fine-grained Mobile Traffic Patterns via a Generative Adversarial Neural Network , 2017, CoNEXT.

[25]  Jacques Felblinger,et al.  Determination of the latency effects on surgical performance and the acceptable latency levels in telesurgery using the dV-Trainer® simulator , 2014, Surgical Endoscopy.

[26]  Geoffrey E. Hinton Deep belief networks , 2009, Scholarpedia.

[27]  Geoffrey E. Hinton,et al.  Restricted Boltzmann machines for collaborative filtering , 2007, ICML '07.

[28]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.