Ultrasound breast tumor image computer-aided diagnosis with texture and morphological features.

[1]  Ruey-Feng Chang,et al.  Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors , 2004, Breast Cancer Research and Treatment.

[2]  J. K. Martin,et al.  Prebiopsy localization of nonpalpable breast lesions. , 1984, AJR. American journal of roentgenology.

[3]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[4]  Massimiliano Pontil,et al.  Support Vector Machines for 3D Object Recognition , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[6]  Alicia Samuels,et al.  Cancer Statistics, 2003 , 2003, CA: a cancer journal for clinicians.

[7]  A. Giuliano,et al.  The prevalence of carcinoma in palpable vs impalpable, mammographically detected lesions. , 1991, AJR. American journal of roentgenology.

[8]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[9]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  D. Chen,et al.  Computer-aided diagnosis applied to US of solid breast nodules by using neural networks. , 1999, Radiology.

[11]  M Rubin,et al.  Use of fine needle aspiration for solid breast lesions is accurate and cost-effective. , 1997, American journal of surgery.

[12]  R. Chang,et al.  Support vector machines for diagnosis of breast tumors on US images. , 2003, Academic radiology.

[13]  H. Biersack,et al.  Scintimammography with technetium-99m methoxyisobutylisonitrile: comparison with mammography and magnetic resonance imaging , 1996, European Journal of Nuclear Medicine.

[14]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[15]  A. Stavros,et al.  Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. , 1995, Radiology.

[16]  Douglas L. Jones,et al.  Edge detection in ultrasound speckle noise , 1994, Proceedings of 1st International Conference on Image Processing.

[17]  L. Esserman New approaches to the imaging, diagnosis, and biopsy of breast lesions. , 2002, Cancer journal.

[18]  R. Chang,et al.  Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis. , 2003, Ultrasound in medicine & biology.

[19]  Patrick Haffner,et al.  Support vector machines for histogram-based image classification , 1999, IEEE Trans. Neural Networks.

[20]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[21]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.