Optical characterization of bovine retinal tissues.

An in-depth characterization of the optical properties of bovine retinal and retinal pigment epithelium-choroidal tissues has been performed. The indices of refraction of these ocular tissues were determined by applying Brewster's law. The inverse adding doubling method based on the diffusion approximation and radiative transport theory is applied to the measured values of the total diffuse transmission, total diffuse reflection, and collimated transmission to calculate the optical absorption, scattering, and scattering anisotropy coefficients of the bovine retinal and retinal pigment epithelium-choroidal tissues. The values of the optical properties obtained from the inverse adding doubling method are compared with those generated by the Monte Carlo simulation technique. Optical polarization measurements are also performed on bovine retinal tissues. Our studies show that both retina and retinal pigment epithelium-choroid possess strong polarization characteristics.

[1]  A Ishimaru,et al.  Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters. , 1976, Applied optics.

[2]  A E Profio,et al.  Spectral transmittance and contrast in breast diaphanography. , 1985, Medical physics.

[3]  A Roggan,et al.  Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation. , 1995, Physics in medicine and biology.

[4]  P. Campochiaro,et al.  Retinal and choroidal neovascularization , 2000, Journal of cellular physiology.

[5]  P. Kubelka,et al.  Errata: New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[6]  M. A. Karam,et al.  PROPAGATION AND SCATTERING IN MULTI-LAYERED RANDOM MEDIA WITH ROUGH INTERFACES , 1982 .

[7]  H. A. Ferwerda,et al.  Scattering and absorption of turbid materials determined from reflection measurements. 1: theory. , 1983, Applied optics.

[8]  D. Sardar,et al.  Optical Properties of Whole Blood , 1998, Lasers in Medical Science.

[9]  F. Kottler Turbid Media with Plane-Parallel Surfaces* , 1960 .

[10]  E. F. Maher,et al.  Transmission and Absorption Coefficients for Ocular Media of the Rhesus Monkey , 1978 .

[11]  T. Dryja,et al.  Elemental analysis of melanins from bovine hair, iris, choroid, and retinal pigment epithelium. , 1979, Investigative ophthalmology & visual science.

[12]  C. M. Kemp,et al.  The spectral reflectance of the nerve fiber layer of the macaque retina. , 1989, Investigative ophthalmology & visual science.

[13]  Lihong V. Wang,et al.  Monte Carlo Modeling of Light Transport in Tissues , 1995 .

[14]  Henk Spekreijse,et al.  UvA-DARE ( Digital Academic Repository ) Near infrared light absorption in the human eye media , 2022 .

[15]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[16]  F. Delori,et al.  Spectral reflectance of the human ocular fundus. , 1989, Applied optics.

[17]  J. Vesecky,et al.  Wave propagation and scattering. , 1989 .

[18]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[19]  R Hiller,et al.  Blindness caused by diabetic retinopathy. , 1974, American journal of ophthalmology.

[20]  R W Flower,et al.  Visualization of a developing vasculature. , 1987, Microvascular research.

[21]  E. R. Berry,et al.  Ocular spectral characteristics as related to hazards from lasers and other light sources. , 1968, American journal of ophthalmology.

[22]  T. Sarna,et al.  Properties and function of the ocular melanin--a photobiophysical view. , 1992, Journal of photochemistry and photobiology. B, Biology.

[23]  J. J. Vos,et al.  Absolute Spectral Reflectance of the Fundus Oculi , 1965 .

[24]  R. Anderson,et al.  ANALYTICAL MODELING FOR THE OPTICAL PROPERTIES OF THE SKIN WITH IN VITRO AND IN VIVO APPLICATIONS , 1981, Photochemistry and photobiology.

[25]  Edward A. Boettner,et al.  Transmission of the Ocular Media , 1962 .

[26]  R. Anderson,et al.  The optics of human skin. , 1981, The Journal of investigative dermatology.

[27]  A. Oseroff,et al.  Preferential light absorption in atheromas in vitro. Implications for laser angioplasty. , 1986, The Journal of clinical investigation.

[28]  S. A. Prahl,et al.  A Monte Carlo model of light propagation in tissue , 1989, Other Conferences.

[29]  M. V. van Gemert,et al.  Optical properties of human blood vessel wall and plaque , 1985, Lasers in surgery and medicine.

[30]  R. Flower,et al.  The effect of blood on ocular fundus reflectance and determination of some optical properties of retinal blood vessels. , 1978, Investigative ophthalmology & visual science.

[31]  P. Kubelka,et al.  New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[32]  C. Hourdakis,et al.  A Monte Carlo estimation of tissue optical properties for use in laser dosimetry. , 1995, Physics in medicine and biology.

[33]  A. Welch,et al.  Determining the optical properties of turbid mediaby using the adding-doubling method. , 1993, Applied optics.

[34]  M. Ducros,et al.  Primate retina imaging with polarization-sensitive optical coherence tomography. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[35]  D. S. Mcleod,et al.  Vasoproliferation in the neonatal dog model of oxygen-induced retinopathy. , 1996, Investigative ophthalmology & visual science.

[36]  Judith R. Mourant,et al.  Scattering properties of biological cells , 1998 .

[37]  R. Glickman,et al.  Optical characterization of melanin. , 2000, Journal of biomedical optics.

[38]  J W Pickering,et al.  In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm , 1997, Physics in medicine and biology.