Rapid adaptation in visual cortex to the structure of images.

Complex cells in striate cortex of macaque showed a rapid pattern-specific adaptation. Adaptation made cells more sensitive to orientation change near the adapting orientation. It reduced correlations among the responses of populations of cells, thereby increasing the information transmitted by each action potential. These changes were brought about by brief exposures to stationary patterns, on the time scale of a single fixation. Thus, if successive fixations expose neurons' receptive fields to images with similar but not identical structure, adaptation will remove correlations and improve discriminability.

[1]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[2]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[3]  L. Stark,et al.  Most naturally occurring human saccades have magnitudes of 15 degrees or less. , 1975, Investigative ophthalmology.

[4]  L. Maffei,et al.  The unresponsive regions of visual cortical receptive fields , 1976, Vision Research.

[5]  H. Barlow,et al.  Adaptation to gratings: No compensatory advantages found , 1976, Vision Research.

[6]  R. Vautin,et al.  Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects. , 1977, Journal of neurophysiology.

[7]  J. Nelson,et al.  Orientation-selective inhibition from beyond the classic visual receptive field , 1978, Brain Research.

[8]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[9]  D. G. Albrecht,et al.  Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. , 1984, The Journal of physiology.

[10]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[11]  D. Regan,et al.  Postadaptation orientation discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[12]  F. Heitger,et al.  The functional role of contrast adaptation , 1988, Vision Research.

[13]  A. Saul,et al.  Adaptation in single units in visual cortex: The tuning of aftereffects in the temporal domain , 1989, Visual Neuroscience.

[14]  P. Lennie,et al.  Contrast adaptation in striate cortex of macaque , 1989, Vision Research.

[15]  T. Wiesel,et al.  The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat , 1990, Vision Research.

[16]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  S. Nelson,et al.  Temporal interactions in the cat visual system. I. Orientation- selective suppression in the visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  A. B. Bonds Temporal dynamics of contrast gain in single cells of the cat striate cortex , 1991, Visual Neuroscience.

[19]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[20]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[21]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[22]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[23]  John Harris,et al.  Vision: Coding and efficiency , 1994, Image Vis. Comput..

[24]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[25]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[26]  R. Shapley,et al.  Temporal-frequency selectivity in monkey visual cortex , 1996, Visual Neuroscience.

[27]  M F Land,et al.  The knowledge base of the oculomotor system. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[29]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[30]  L. P. O'Keefe,et al.  Adaptation to contingencies in macaque primary visual cortex. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[31]  M. Carandini,et al.  A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. , 1997, Science.

[32]  P Lennie,et al.  Distinctive characteristics of subclasses of red–green P-cells in LGN of macaque , 1998, Visual Neuroscience.

[33]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[34]  Rajeev Sharma,et al.  Advances in Neural Information Processing Systems 11 , 1999 .

[35]  T. Noda,et al.  Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. , 1999, Science.