Synthesis, σ Receptor Affinity, and Pharmacological Evaluation of 5‐Phenylsulfanyl‐ and 5‐Benzyl‐Substituted Tetrahydro‐2‐benzazepines

In accordance with a novel strategy for generating the 2‐benzazepine scaffold by connecting C6–C1 and C3–N building blocks, a set of 5‐phenylsulfanyl‐ and 5‐benzyl‐substituted tetrahydro‐2‐benzazepines was synthesized and pharmacologically evaluated. Key steps of the synthesis were the Heck reaction, the Stetter reaction, a reductive cyclization, and the introduction of diverse N substituents at the end of the synthesis. High σ1 affinity was achieved for 2‐benzazepines with linear or branched alk(en)yl residues containing at least an n‐butyl substructure. The butyl‐ and 4‐fluorobenzyl‐substituted derivatives, (±)‐5‐benzyl‐2‐butyl‐2,3,4,5‐tetrahydro‐1H‐2‐benzazepine (19 b) and (±)‐5‐benzyl‐2‐(4‐fluorobenzyl)‐2,3,4,5‐tetrahydro‐1H‐2‐benzazepine (19 m), show high selectivity over more than 50 other relevant targets, including the σ2 subtype and various binding sites of the N‐methyl‐D‐aspartate (NMDA) receptor. In the Irwin screen, 19 b and 19 m showed clean profiles without inducing considerable side effects. Compounds 19 b and 19 m did not reveal significant analgesic and cognition‐enhancing activity. Compound 19 m did not have any antidepressant‐like effects in mice.

[1]  B. Wünsch,et al.  Heck reaction of ortho-substituted iodobenzenes with α,β-unsaturated nitriles as a key step in the synthesis of tetrahydro-2-benzazepines and hexahydro-3-benzazocines , 2013 .

[2]  Frank Glorius,et al.  C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. , 2013, Nature chemistry.

[3]  D. Rossi,et al.  Sigma receptor modulators: a patent review , 2013, Expert opinion on therapeutic patents.

[4]  B. Wünsch,et al.  Improvement of σ1 receptor affinity by late-stage C-H-bond arylation of spirocyclic lactones. , 2013, Bioorganic & medicinal chemistry.

[5]  B. Wünsch,et al.  Enantiomerically pure 1,3-dioxanes as highly selective NMDA and σ₁ receptor ligands. , 2012, Journal of medicinal chemistry.

[6]  B. Wünsch,et al.  Asymmetric Synthesis of Potent and Selective σ1 Receptor Ligands with Tetrahydro‐3‐benzazepine Scaffold , 2012 .

[7]  B. Wünsch The σ(1) receptor antagonist S1RA is a promising candidate for the treatment of neurogenic pain. , 2012, Journal of medicinal chemistry.

[8]  D. Zamanillo,et al.  Synthesis and biological evaluation of the 1-arylpyrazole class of σ(1) receptor antagonists: identification of 4-{2-[5-methyl-1-(naphthalen-2-yl)-1H-pyrazol-3-yloxy]ethyl}morpholine (S1RA, E-52862). , 2012, Journal of medicinal chemistry.

[9]  B. Wűnsch Pharmacophore models and development of spirocyclic ligands for σ1 receptors. , 2012, Current pharmaceutical design.

[10]  P. Brust,et al.  Synthesis, pharmacological activity and structure affinity relationships of spirocyclic σ(1) receptor ligands with a (2-fluoroethyl) residue in 3-position. , 2011, Bioorganic & medicinal chemistry.

[11]  Dirk Schepmann,et al.  Synthesis and SAR studies of chiral non-racemic dexoxadrol analogues as uncompetitive NMDA receptor antagonists. , 2010, Bioorganic & medicinal chemistry.

[12]  Tangui Maurice,et al.  The pharmacology of sigma-1 receptors. , 2009, Pharmacology & therapeutics.

[13]  J. Vela,et al.  Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury , 2009, PAIN.

[14]  J. Steinbach,et al.  Evaluation of spirocyclic 3-(3-fluoropropyl)-2-benzofurans as sigma1 receptor ligands for neuroimaging with positron emission tomography. , 2009, Journal of medicinal chemistry.

[15]  D. Zamanillo,et al.  Selective sigma-1 (sigma1) receptor antagonists: emerging target for the treatment of neuropathic pain. , 2009, Central nervous system agents in medicinal chemistry.

[16]  B. Wünsch,et al.  Asymmetric synthesis and σ receptor affinity of enantiomerically pure 1,4-disubstituted tetrahydro-1H-3-benzazepines , 2009 .

[17]  D. Zamanillo,et al.  Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: Studies with selective sigma-1 ligands and sigma-1 knockout mice , 2009, PAIN®.

[18]  B. Wünsch,et al.  Asymmetric synthesis of enantiomerically pure 2-substituted tetrahydro-3-benzazepines and their affinity to sigma1 receptors. , 2009, The Journal of organic chemistry.

[19]  J. Entrena,et al.  Pharmacology and Therapeutic Potential of Sigma1 Receptor Ligands , 2008, Current neuropharmacology.

[20]  Brian M. Smith,et al.  Discovery and structure-activity relationship of (1R)-8-chloro-2,3,4,5-tetrahydro-1-methyl-1H-3-benzazepine (Lorcaserin), a selective serotonin 5-HT2C receptor agonist for the treatment of obesity. , 2008, Journal of medicinal chemistry.

[21]  Teruo Hayashi,et al.  Sigma-1 Receptor Chaperones at the ER- Mitochondrion Interface Regulate Ca2+ Signaling and Cell Survival , 2007, Cell.

[22]  J. Butera Current and emerging targets to treat neuropathic pain. , 2007, Journal of medicinal chemistry.

[23]  J. Kennedy Neuropathic pain: molecular complexity underlies continuing unmet medical need. , 2007, Journal of medicinal chemistry.

[24]  M. Martina,et al.  The sigma‐1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus , 2007, The Journal of physiology.

[25]  B. Wünsch,et al.  Asymmetric synthesis of 1-substituted tetrahydro-3-benzazepines as NMDA receptor antagonists , 2007 .

[26]  Glennon Ra Pharmacophore identification for sigma-1 (sigma1) receptor binding: application of the "deconstruction-reconstruction-elaboration" approach. , 2005 .

[27]  Thierry Langer,et al.  Discovery of high-affinity ligands of σ1 receptor, ERG2, and emopamil binding protein by pharmacophore modeling and virtual screening , 2005 .

[28]  G. Debonnel,et al.  The role of sigma receptors in depression. , 2005, Journal of pharmacological sciences.

[29]  B. Wünsch,et al.  Synthesis and structure/NMDA receptor affinity relationships of 1-substituted tetrahydro-3-benzazepines. , 2004, Bioorganic & medicinal chemistry.

[30]  S. Irwin,et al.  Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse , 1968, Psychopharmacologia.

[31]  Teruo Hayashi,et al.  σ-1 Receptor Ligands , 2004 .

[32]  Bernhard Wünsch,et al.  Novel sigma receptor ligands. Part 2. SAR of spiro[[2]benzopyran-1,4'-piperidines] and spiro[[2]benzofuran-1,4'-piperidines] with carbon substituents in position 3. , 2002, Journal of medicinal chemistry.

[33]  G. Debonnel,et al.  Modulation of serotonergic neurotransmission by short‐ and long‐term treatments with sigma ligands , 2001, British journal of pharmacology.

[34]  Teruo Hayashi,et al.  Ca2+ Signaling via ς1-Receptors: Novel Regulatory Mechanism Affecting Intracellular Ca2+Concentration , 2000 .

[35]  M. Tsuda,et al.  Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice , 1999, British journal of pharmacology.

[36]  A. Privat,et al.  Sigma1 (σ 1) receptor agonists and neurosteroids attenuate β 25–35-amyloid peptide-induced amnesia in mice through a common mechanism , 1998, Neuroscience.

[37]  W. Frishman,et al.  Fenoldopam: A New Dopamine Agonist for the Treatment of Hypertensive Urgencies and Emergencies , 1998, Journal of clinical pharmacology.

[38]  Tetsuya Kobayashi,et al.  σ1 Receptor subtype is involved in the relief of behavioral despair in the mouse forced swimming test , 1996 .

[39]  M. Aceto,et al.  Antipodal alpha-N-(methyl through decyl)-N-normetazocines (5,9 alpha-dimethyl-2'-hydroxy-6,7-benzomorphans): in vitro and in vivo properties. , 1994, Journal of medicinal chemistry.

[40]  R. Glennon,et al.  Structural features important for sigma 1 receptor binding. , 1994, Journal of medicinal chemistry.

[41]  C. Montigny,et al.  Modification of the N-methyl-D-aspartate response by antidepressant σ receptor ligands , 1993 .

[42]  S. Mascarella,et al.  Enantiomeric N-substituted N-normetazocines: a comparative study of affinities at sigma, PCP, and mu opioid receptors. , 1992, Journal of medicinal chemistry.

[43]  Edythe D. London,et al.  Selective loss of cerebral cortical Sigma, but not PCP binding sites in schizophrenia , 1991, Biological Psychiatry.

[44]  K. Flaim,et al.  Synthesis and dopaminergic binding of 2-aryldopamine analogues: phenethylamines, 3-benzazepines, and 9-(aminomethyl)fluorenes. , 1986, Journal of medicinal chemistry.

[45]  B. Samuelsson,et al.  The p-Methoxybenzyl Group as Protective Group of the Anomeric Centre. Selective Conversions of Hydroxy Groups into Bromo Groups in p-Methoxybenzyl 2-Deoxy-2-phthalimido-beta-D-glucopyranoside. , 1984 .

[46]  H. Stetter,et al.  Addition of Aliphatic Aldehydes to Activated Double Bonds , 1974 .

[47]  H. Stetter,et al.  Addition aliphatischer Aldehyde an aktivierte Doppelbindungen , 1974 .

[48]  H. Stetter,et al.  Eine neue Methode Zur Addition von Aldehyden an aktivierte Doppelbindungen, III. Addition von aromatischen und heterocyclischen Aldehyden an α, β-ungesättigte Nitrile , 1974 .

[49]  H. Stetter,et al.  Addition von aldehyden an aktivierte doppelbindungen, VI. Über additionen aliphatischer aldehyde an methylvinylketon , 1974 .

[50]  H. Stetter,et al.  Eine neue Methode zur Addition von Aldehyden an aktivierte Doppelbindungen , 1973 .