Sharpness of the phase transition for continuum percolation in R^2

We study the phase transition of random radii Poisson Boolean percolation: Around each point of a planar Poisson point process, we draw a disc of random radius, independently for each point. The behavior of this process is well understood when the radii are uniformly bounded from above. In this article, we investigate this process for unbounded (and possibly heavy tailed) radii distributions. Under mild assumptions on the radius distribution, we show that both the vacant and occupied sets undergo a phase transition at the same critical parameter $\lambda_c$. Moreover, - For $\lambda < \lambda_c$, the vacant set has a unique unbounded connected component and we give precise bounds on the one-arm probability for the occupied set, depending on the radius distribution. - At criticality, we establish the box-crossing property, implying that no unbounded component can be found, neither in the occupied nor the vacant sets. We provide a polynomial decay for the probability of the one-arm events, under sharp conditions on the distribution of the radius. - For $\lambda > \lambda_c$, the occupied set has a unique unbounded component and we prove that the one-arm probability for the vacant decays exponentially fast. The techniques we develop in this article can be applied to other models such as the Poisson Voronoi and confetti percolation.

[1]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[2]  R. Meester,et al.  Nonuniversality and continuity of the critical covered volume fraction in continuum percolation , 1994 .

[3]  Johan Tykesson,et al.  Percolation in the vacant set of Poisson cylinders , 2010, 1010.5338.

[4]  J.-B. Gouéré Percolation in a multiscale Boolean model , 2010, 1009.3719.

[5]  I. Balberg Continuum Percolation , 2009, Encyclopedia of Complexity and Systems Science.

[6]  Vladas Sidoravicius,et al.  Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with $${1 \le q \le 4}$$1≤q≤4 , 2015, 1505.04159.

[7]  Benjamin J. Keele,et al.  Cambridge University Press v. Georgia State University , 2016 .

[8]  H. Kesten The critical probability of bond percolation on the square lattice equals 1/2 , 1980 .

[9]  Rahul Roy,et al.  Uniqueness of unbounded occupied and vacant components in Boolean models , 1994 .

[10]  Béla Bollobás,et al.  The critical probability for random Voronoi percolation in the plane is 1/2 , 2006 .

[11]  L. Russo A note on percolation , 1978 .

[12]  D. Welsh,et al.  Percolation probabilities on the square lattice , 1978 .

[13]  I. Benjamini,et al.  Exceptional planes of percolation , 1998 .

[14]  Christian Hirsch,et al.  A Harris‐Kesten theorem for confetti percolation , 2012, Random Struct. Algorithms.

[15]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[16]  V. Beara The self-dual point of the two-dimensional random-cluster model is critical for q > 1 , 2011 .

[17]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .

[18]  Rahul Roy The Russo-Seymour-Welsh Theorem and the Equality of Critical Densities and the "Dual" Critical Densities for Continuum Percolation on $|mathbb{R}^2$ , 1990 .

[19]  E. N. Gilbert,et al.  Random Plane Networks , 1961 .

[20]  H. Poincaré,et al.  Percolation ? , 1982 .

[21]  V. Tassion,et al.  Existence of an unbounded vacant set for subcritical continuum percolation , 2017, 1706.03053.

[22]  Ryan O'Donnell,et al.  Analysis of Boolean Functions , 2014, ArXiv.

[23]  Percolation of poisson sticks on the plane , 1991 .

[24]  Daniel Ahlberg,et al.  Noise sensitivity in continuum percolation , 2011, 1108.0310.

[25]  L. Russo On the critical percolation probabilities , 1981 .

[26]  A. Sznitman On scaling limits and Brownian interlacements , 2012, 1209.4531.

[27]  H. Duminil-Copin,et al.  Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with 1≤q≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} , 2016, Communications in Mathematical Physics.

[28]  Jean-Baptiste Gouéré,et al.  Existence of subcritical regimes in the Poisson Boolean model of continuum percolation , 2006, math/0611369.

[29]  P. Hall On Continuum Percolation , 1985 .

[30]  V. Tassion,et al.  Quenched Voronoi percolation , 2015, 1501.04075.

[31]  L. Russo An approximate zero-one law , 1982 .

[32]  B. M. Fulk MATH , 1992 .

[33]  J. Chayes,et al.  On a sharp transition from area law to perimeter law in a system of random surfaces , 1983 .

[34]  V. Tassion Crossing probabilities for Voronoi percolation , 2014, 1410.6773.

[35]  Kenneth S. Alexander,et al.  The RSW theorem for continuum percolation and the CLT for Euclidean minimal spanning trees , 1996 .

[36]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[37]  S. A. Zuev,et al.  Continuous models of percolation theory. I , 1985 .

[38]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.

[39]  Christophe Garban,et al.  Noise Sensitivity of Boolean Functions and Percolation , 2011, 1102.5761.

[40]  Béla Bollobás,et al.  Threshold functions , 1987, Comb..

[41]  M. Talagrand On Russo's Approximate Zero-One Law , 1994 .

[42]  H. Kesten Percolation theory for mathematicians , 1982 .

[43]  B. Bollobás The evolution of random graphs , 1984 .

[44]  J. Hammersley,et al.  Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[45]  Andrew G. Glen,et al.  APPL , 2001 .

[46]  A. Sidorenko,et al.  The Coincidence of Critical Points in Poisson Percolation Models , 1988 .