COMPARING SINGLE-EPOCH VIRIAL BLACK HOLE MASS ESTIMATORS FOR LUMINOUS QUASARS

Single-epoch virial black hole (BH) mass estimators utilizing broad emission lines have been routinely applied to high-redshift quasars to estimate their BH masses. Depending on the redshift, different line estimators (Hα, Hβ, Mg II λ2798, C IV λ1549) are often used with optical/near-infrared spectroscopy. Here, we use a homogeneous sample of 60 intermediate-redshift (z ~ 1.5-2.2) Sloan Digital Sky Survey quasars with optical and near-infrared spectra covering C IV through Hα to investigate the consistency between different single-epoch virial BH mass estimators. We critically compare rest-frame UV line estimators (C IV λ1549, C III] λ1908,  and Mg II λ2798) with optical estimators (Hβ and Hα) in terms of correlations between line widths and between continuum/line luminosities, for the high-luminosity regime (L 5100 > 1045.4 erg s–1) probed by our sample. The continuum luminosities of L 1350 and L 3000, and the broad-line luminosities are well correlated with L 5100, reflecting the homogeneity of quasar spectra in the rest-frame UV-optical, among which L 1350 and the line luminosities for C IV and C III] have the largest scatter in the correlation with L 5100. We found that the Mg II FWHM correlates well with the FWHMs of the Balmer lines and that the Mg II line estimator can be calibrated to yield consistent virial mass estimates with those based on the Hβ/Hα estimators, thus extending earlier results on less luminous objects. The C IV FWHM is poorly correlated with the Balmer line FWHMs, and the scatter between the C IV and Hβ FWHMs consists of an irreducible part (~0.12 dex), and a part that correlates with the blueshift of the C IV centroid relative to that of Hβ, similar to earlier studies comparing C IV with Mg II. The C III] FWHM is found to correlate with the C IV FWHM, and hence is also poorly correlated with the Hβ FWHM. While the C IV and C III] lines can be calibrated to yield consistent virial mass estimates as Hβ on average, the scatter is substantially larger than Mg II, and the usage of C IV/C III] FWHM in the mass estimators does not improve the agreement with the Hβ estimator. We discuss controversial claims in the literature on the correlation between C IV and Hβ FWHMs, and suggest that the reported correlation is either a result based on small samples or only valid for low-luminosity objects.

[1]  E. Salpeter,et al.  On the Time Dependence of Emission-Line Strengths from a Photoionized Nebula , 1972 .

[2]  J. Chiang,et al.  Accretion Disk Winds from Active Galactic Nuclei , 1995 .

[3]  Measuring the black hole masses of high-redshift quasars , 2002, astro-ph/0204473.

[4]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999 .

[5]  P. Hewett,et al.  Improved redshifts for SDSS quasar spectra , 2010, 1003.3017.

[6]  B. Peterson,et al.  SYSTEMATIC UNCERTAINTIES IN BLACK HOLE MASSES DETERMINED FROM SINGLE-EPOCH SPECTRA , 2008, 0810.3234.

[7]  R. Brunner,et al.  The Effect of Variability on the Estimation of Quasar Black Hole Masses , 2007, 0708.0064.

[8]  T. Treu,et al.  Comparing and Calibrating Black Hole Mass Estimators for Distant Active Galactic Nuclei , 2007, 0710.1839.

[9]  H. R. Miller,et al.  Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 5: Variability of the ultraviolet continuum and emission lines of NGC 3783 , 1994 .

[10]  P. Marziani,et al.  Estimating black hole masses in quasars using broad optical and UV emission lines , 2011, 1108.5102.

[11]  G. Richards,et al.  UNIFICATION OF LUMINOUS TYPE 1 QUASARS THROUGH C iv EMISSION , 2010, 1011.2282.

[12]  What controls the C iv line profile in active galactic nuclei , 2004, astro-ph/0409196.

[13]  T. O. S. University,et al.  MASS FUNCTIONS OF THE ACTIVE BLACK HOLES IN DISTANT QUASARS FROM THE LARGE BRIGHT QUASAR SURVEY, THE BRIGHT QUASAR SURVEY, AND THE COLOR-SELECTED SAMPLE OF THE SDSS FALL EQUATORIAL STRIPE , 2009, 0904.3348.

[14]  Wm. A. Wheaton,et al.  Spectral Irradiance Calibration in the Infrared. XIV. The Absolute Calibration of 2MASS , 2003, astro-ph/0304350.

[15]  A. Wandel,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques , 1999 .

[16]  O. Shemmer,et al.  BLACK HOLE MASS AND GROWTH RATE AT z ≃ 4.8: A SHORT EPISODE OF FAST GROWTH FOLLOWED BY SHORT DUTY CYCLE ACTIVITY , 2010, 1012.1871.

[17]  T. Treu,et al.  THE LICK AGN MONITORING PROJECT: RECALIBRATING SINGLE-EPOCH VIRIAL BLACK HOLE MASS ESTIMATES , 2011, 1111.6604.

[18]  B. Wilkes,et al.  An Empirical Ultraviolet Template for Iron Emission in Quasars as Derived from I Zwicky 1 , 2001, astro-ph/0104320.

[19]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[20]  C. Gaskell Redshift difference between high and low ionization emission-line regions in QSOS-evidence for radial motions , 1982 .

[21]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[22]  T. Boroson,et al.  The Emission-Line Properties of Low-Redshift Quasi-stellar Objects , 1992 .

[23]  Rebecca A. Bernstein,et al.  The FIRE infrared spectrometer at Magellan: construction and commissioning , 2010, Astronomical Telescopes + Instrumentation.

[24]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2011, 2209.03987.

[25]  Ž. Ivezić,et al.  A DESCRIPTION OF QUASAR VARIABILITY MEASURED USING REPEATED SDSS AND POSS IMAGING , 2011, 1112.0679.

[26]  Yue Shen,et al.  THE DEMOGRAPHICS OF BROAD-LINE QUASARS IN THE MASS–LUMINOSITY PLANE. I. TESTING FWHM-BASED VIRIAL BLACK HOLE MASSES , 2011, 1107.4372.

[27]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[28]  Chien Y. Peng,et al.  REDSHIFT EVOLUTION IN BLACK HOLE–BULGE RELATIONS: TESTING C iv-BASED BLACK HOLE MASSES , 2009, 0911.0685.

[29]  Xiaohui Fan,et al.  DETERMINING QUASAR BLACK HOLE MASS FUNCTIONS FROM THEIR BROAD EMISSION LINES: APPLICATION TO THE BRIGHT QUASAR SURVEY , 2008, 0811.2001.

[30]  B. Peterson,et al.  Evidence for Supermassive Black Holes in Active Galactic Nuclei from Emission-Line Reverberation , 2000, astro-ph/0007147.

[31]  Bradley M. Peterson,et al.  The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements , 2006, 0812.2283.

[32]  Determining central black hole masses in distant active galaxies , 2002, astro-ph/0204106.

[33]  G. Richards,et al.  Biases in Virial Black Hole Masses: An SDSS Perspective , 2007, 0709.3098.

[34]  Richard L. White,et al.  A Catalog of 1.4 GHz Radio Sources from the FIRST Survey , 1997 .

[35]  P. Hall,et al.  Biases in the quasar mass–luminosity plane , 2010, 1011.1268.

[36]  Mamoru Doi,et al.  Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.

[37]  C. Urry,et al.  Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities , 2002, astro-ph/0207249.

[38]  The Mass Function of Active Black Holes in the Local Universe , 2007 .

[39]  University of Maryland,et al.  Dynamics of Line-driven Disk Winds in Active Galactic Nuclei , 2000 .

[40]  Shai Kaspi,et al.  Reverberation Mapping of High-Luminosity Quasars: First Results , 2006, astro-ph/0612722.

[41]  N. Ross,et al.  The C iv linewidth distribution for quasars and its implications for broad-line region dynamics and virial mass estimation , 2010, 1005.5287.

[42]  Paul S. Smith,et al.  Variations of the ultraviolet Fe II and Balmer continuum emission in the Seyfert galaxy NGC 5548 , 1993 .

[43]  Systematic effects in measurement of black hole masses by emission-line reverberation of active galactic nuclei: Eddington ratio and inclination , 2006, astro-ph/0603460.

[44]  T. O. S. University,et al.  The Mass of the Central Black Hole in the Seyfert Galaxy NGC 4151 , 2006, astro-ph/0605038.

[45]  Bradley M. Peterson,et al.  REVERBERATION MAPPING OF ACTIVE GALACTIC NUCLEI , 1993 .

[46]  A. Szalay,et al.  THE SLOAN DIGITAL SKY SURVEY QUASAR CATALOG. V. SEVENTH DATA RELEASE , 2010, 1004.1167.

[47]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[48]  Christopher F. McKee,et al.  Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. , 1982 .

[49]  H. Netzer,et al.  Broad emission features in QSOs and active galactic nuclei. II - New observations and theory of Fe II and H I emission , 1985 .

[50]  D. Kelson Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.

[51]  E. Athanassoula,et al.  An expanded Mbh–σ diagram, and a new calibration of active galactic nuclei masses , 2010, 1007.3834.

[52]  J. Dunlop,et al.  The cosmological evolution of quasar black hole masses , 2003, astro-ph/0310267.

[53]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004 .

[54]  S. Grandi The 3000 A bump in quasars , 1982 .

[55]  D. Dultzin,et al.  C IV λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei , 2007, 0705.1895.

[56]  B. Peterson Masses of Black Holes in Active Galactic Nuclei: Implications for NLS1s , 2002, astro-ph/0210639.

[57]  O. Shemmer,et al.  THE ASTROPHYSICAL JOURNAL,???:???–???, 200????????? Preprint typeset using L ATEX style emulateapj v. 12/14/05 BLACK-HOLE MASS AND GROWTH RATE AT HIGH REDSHIFT , 2007 .

[58]  C. Kochanek,et al.  BLACK HOLE MASS ESTIMATES BASED ON C iv ARE CONSISTENT WITH THOSE BASED ON THE BALMER LINES , 2010, 1009.1145.

[59]  J. Baldwin Luminosity Indicators in the Spectra of Quasi-Stellar Objects , 1977 .

[60]  James Howard,et al.  Mass producing an efficient NIR spectrograph , 2004, SPIE Astronomical Telescopes + Instrumentation.

[61]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[62]  The Black Hole Mass-Galaxy Bulge Relationship for QSOs in the Sloan Digital Sky Survey Data Release 3 , 2007 .

[63]  P. Hall,et al.  SUPERMASSIVE BLACK HOLE MASS ESTIMATES USING SLOAN DIGITAL SKY SURVEY QUASAR SPECTRA AT 0.7 < z < 2 , 2011, 1104.1828.

[64]  Arjun Dey,et al.  Chandra Detection of a Type II Quasar at z = 3.288 , 2001, astro-ph/0111513.

[65]  Matthew A. Bershady,et al.  Linear Regression for Astronomical Data with Measurement Errors and Intrinsic Scatter , 1996, astro-ph/9605002.

[66]  G. Richards,et al.  Mass Functions of the Active Black Holes in Distant Quasars from the Sloan Digital Sky Survey Data Release 3 , 2007, 0801.0243.

[67]  T. Treu,et al.  THE LICK AGN MONITORING PROJECT: THE MBH–σ* RELATION FOR REVERBERATION-MAPPED ACTIVE GALAXIES , 2010, 1004.0252.

[68]  L. Ho,et al.  ESTIMATING BLACK HOLE MASSES IN ACTIVE GALAXIES USING THE H α EMISSION LINE , 2005 .

[69]  J. Woo Mg ii LINE VARIABILITY OF HIGH-LUMINOSITY QUASARS , 2008, 0802.3705.

[70]  Lars Hernquist,et al.  CONSTRAINTS ON BLACK HOLE GROWTH, QUASAR LIFETIMES, AND EDDINGTON RATIO DISTRIBUTIONS FROM THE SDSS BROAD-LINE QUASAR BLACK HOLE MASS FUNCTION , 2010, 1006.3561.

[71]  High-Redshift Quasars and Star Formation in the Early Universe* , 2001, astro-ph/0109208.

[72]  Astronomy,et al.  THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI: THE EFFECT OF HOST-GALAXY STARLIGHT ON LUMINOSITY MEASUREMENTS. II. THE FULL SAMPLE OF REVERBERATION-MAPPED AGNs , 2008, 0812.2283.

[73]  R. Zamanov,et al.  Average Ultraviolet Quasar Spectra in the Context of Eigenvector 1: A Baldwin Effect Governed by the Eddington Ratio? , 2004, astro-ph/0408334.

[74]  X. I. O. D. Ong,et al.  ESTIMATING BLACK HOLE MASSES IN ACTIVE GALACTIC NUCLEI USING THE Mg II λ2800 EMISSION LINE , 2009 .

[75]  B. Peterson,et al.  The Mass of the Central Black Hole in the Seyfert Galaxy NGC 3783 , 2002, astro-ph/0202382.

[76]  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2006, astro-ph/0601303.

[77]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[78]  Yue Shen,et al.  THE IMPACT OF THE UNCERTAINTY IN SINGLE-EPOCH VIRIAL BLACK HOLE MASS ESTIMATES ON THE OBSERVED EVOLUTION OF THE BLACK HOLE–BULGE SCALING RELATIONS , 2009, 0911.5208.

[79]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[80]  P. Marziani,et al.  Phenomenology of Broad Emission Lines in Active Galactic Nuclei , 2000 .

[81]  D. Grupe,et al.  BLACK HOLE MASSES OF INTERMEDIATE-REDSHIFT QUASARS: NEAR-INFRARED SPECTROSCOPY , 2009, 0901.3378.

[82]  K. Gebhardt,et al.  The black hole mass–galaxy bulge relationship for QSOs in the SDSS DR3 , 2005 .

[83]  T. Tanabé,et al.  Fe II Emission in 14 Low-Redshift Quasars. I. Observations , 2006, astro-ph/0606040.

[84]  M. Dietrich,et al.  Implications of Quasar Black Hole Masses at High Redshifts , 2004, astro-ph/0405126.

[85]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[86]  Red and Reddened Quasars in the Sloan Digital Sky Survey , 2003, astro-ph/0305305.

[87]  Arjun Dey,et al.  Black Hole Masses and Eddington Ratios at 0.3 < z < 4 , 2005, astro-ph/0508657.

[88]  Black hole mass estimation using a relation between the BLR size and emission line luminosity of AGN , 2004, astro-ph/0403243.