Recent progress in piezoelectric thin film fabrication via the solvothermal process

The reaction conditions are regulated to realize the preparation of a high piezoelectric thin film via a solvothermal process.

[1]  H. Xiong,et al.  Orientation and Morphology Control of the Liquid Crystalline Block Copolymer Thin Film by Liquid Crystalline Solvent. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[2]  J. I. Ramírez,et al.  Integrated electronics for control of large-area piezoelectric arrays for adjustable optics , 2018, Sensors and Actuators A: Physical.

[3]  L. Villanueva,et al.  Fabrication of suspended microchannel resonators with integrated piezoelectric transduction , 2018 .

[4]  Youtao Song,et al.  Preparation of Ce4+-doped BaZrO3 by hydrothermal method and application in dual-frequent sonocatalytic degradation of norfloxacin in aqueous solution. , 2018, Ultrasonics sonochemistry.

[5]  Dianzhong Wen,et al.  Fabrication Technology and Characteristics Research of the Acceleration Sensor Based on Li-Doped ZnO Piezoelectric Thin Films , 2018, Micromachines.

[6]  Chong-Gun Yu,et al.  Lifetime prediction of InGaZnO thin film transistor for the application of display device and BEOL-transistors , 2018 .

[7]  J. Joseph,et al.  Piezoelectric Micromachined Ultrasonic Transducer Using Silk Piezoelectric Thin Film , 2018, IEEE Electron Device Letters.

[8]  I. Kanno Piezoelectric MEMS: Ferroelectric thin films for MEMS applications , 2018 .

[9]  A. Maldonado,et al.  Deposition of ZnO thin films by ultrasonic spray pyrolysis technique. Effect of the milling speed and time and its application in photocatalysis , 2018 .

[10]  M. Kolahdouz,et al.  Ultra-high efficiency piezotronic sensing using piezo-engineered FETs , 2018 .

[11]  M. Calzada,et al.  Direct fabrication of BiFeO3 thin films on polyimide substrates for flexible electronics , 2017 .

[12]  S. Tolbert,et al.  Using Nanoscale Domain Size To Control Charge Storage Kinetics in Pseudocapacitive Nanoporous LiMn2O4 Powders , 2017 .

[13]  M. Kurosawa,et al.  Characterization of (111)-oriented epitaxial (K0.5Na0.5)NbO3 thick films deposited by hydrothermal method , 2017 .

[14]  W. Cao,et al.  Exceptionally High Piezoelectric Coefficient and Low Strain Hysteresis in Grain-Oriented (Ba, Ca)(Ti, Zr)O3 through Integrating Crystallographic Texture and Domain Engineering. , 2017, ACS applied materials & interfaces.

[15]  B. Zhu,et al.  Novel fabrication of PZT thick films by an oil-bath based hydrothermal method , 2017 .

[16]  F. Lu,et al.  A facile method to control grain sizes of barium strontium titanate films on TiN/Si in the hydrothermal–galvanic couple synthesis , 2017 .

[17]  Z. Wang,et al.  Domain Evolution and Piezoelectric Response across Thermotropic Phase Boundary in (K,Na)NbO3-Based Epitaxial Thin Films. , 2017, ACS applied materials & interfaces.

[18]  K. Sundaram,et al.  Photoluminescence studies on BCN thin films synthesized by RF magnetron sputtering , 2016 .

[19]  B. A. Patterson,et al.  Conformal BaTiO3 Films with High Piezoelectric Coupling through an Optimized Hydrothermal Synthesis. , 2016, ACS applied materials & interfaces.

[20]  A. Ismail,et al.  Solvothermal synthesis of nanoporous TiO2: the impact on thin-film composite membranes for engineered osmosis application , 2016, Nanotechnology.

[21]  J. Ouyang,et al.  Strain Engineered CaBi2Nb2O9 Thin Films with Enhanced Electrical Properties. , 2016, ACS applied materials & interfaces.

[22]  T. Morita,et al.  Optimum reaction conditions for lead zirconate titanate thick film deposition by ultrasound-assisted hydrothermal method , 2016 .

[23]  H. Imai Mesostructured crystals: Growth processes and features , 2016 .

[24]  A. Taabouche,et al.  Preparation and characterization of Al-doped ZnO piezoelectric thin films grown by pulsed laser deposition , 2016 .

[25]  Wei Liu,et al.  Improvement in the Piezoelectric Performance of a ZnO Nanogenerator by a Combination of Chemical Doping and Interfacial Modification , 2016 .

[26]  H. Dehghani,et al.  Synthesis of titanium dioxide nanostructures by solvothermal method and their application in preparation of nanocomposite based on graphene , 2016, Journal of Materials Science.

[27]  Jie Xiong,et al.  Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO-Based Flexible Nanogenerators. , 2016, ACS applied materials & interfaces.

[28]  Dong-Soo Park,et al.  Electrical properties of piezoelectric PZT thick film by aerosol deposition method , 2015 .

[29]  T. Morita,et al.  Thick KNbO 3 films deposited by ultrasonic-assisted hydrothermal method , 2015 .

[30]  M. Kurosawa,et al.  Ferroelectric and piezoelectric properties of KNbO3 films deposited on flexible organic substrate by hydrothermal method , 2014 .

[31]  C. Ni,et al.  Preparation of Flexible Nano Piezoelectric/Glass Fiber Cloth Composite by Hydrothermal Method , 2014 .

[32]  Joo-Yun Jung,et al.  Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. , 2014, ACS nano.

[33]  C. C. Epley,et al.  Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. , 2014, Journal of the American Chemical Society.

[34]  F. Lu,et al.  Hydrothermal-galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrates☆ , 2013 .

[35]  K. Shinagawa,et al.  Ferroelectric mesocrystals of bismuth sodium titanate: formation mechanism, nanostructure, and application to piezoelectric materials. , 2013, Inorganic chemistry.

[36]  S. Priya,et al.  Optical crystallographic study of piezoelectric KxNa1−xNbO3 (x = 0.4, 0.5 and 0.6) single crystals using linear birefringence , 2013 .

[37]  S. Wada,et al.  Preparation of Potassium Niobate-Coated Barium Titanate Accumulation Ceramics by Solvothermal Synthesis and Enhancement of Piezoelectric Property , 2013 .

[38]  K. Wong,et al.  Phase transitions and optical characterization of lead-free piezoelectric (K0.5Na0.5)0.96Li0.04(Nb0.8Ta0.2)O3 thin films , 2013 .

[39]  M. Kurosawa,et al.  Ferroelectric and piezoelectric properties of (K,Na)NbO3 thick films prepared on metal substrates by hydrothermal method , 2013, Journal of the Korean Physical Society.

[40]  J. R. Botha,et al.  Hydrothermal synthesis of ZnO thin films and its electrical characterization , 2012 .

[41]  Dengwei Hu,et al.  Solvothermal Soft Chemical Synthesis and Characterization of Nanostructured Ba1–x(Bi0.5K0.5)xTiO3 Platelike Particles with Crystal-Axis Orientation , 2011 .

[42]  S. Komarneni,et al.  Synthesis of PZT fine particles using Ti3+ precursor at a low hydrothermal temperature of 110 °C , 2011 .

[43]  T. Shrout,et al.  Piezoelectric and Ferroelectric Properties of Li‐Doped (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–BaTiO3 Lead‐Free Piezoelectric Ceramics , 2010 .

[44]  Dragan Damjanovic,et al.  WHAT CAN BE EXPECTED FROM LEAD-FREE PIEZOELECTRIC MATERIALS? , 2010 .

[45]  N. Setter,et al.  Large-scale fabrication of titanium-rich perovskite PZT submicro/nano wires and their electromechanical properties , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[46]  Dragan Damjanovic Comments on Origins of Enhanced Piezoelectric Properties in Ferroelectrics , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[47]  Prasanta Kumar Panda,et al.  Review: environmental friendly lead-free piezoelectric materials , 2009, Journal of Materials Science.

[48]  Byoung-Kuk Lee,et al.  Preparation and characterization of piezoelectric ceramic–polymer composite thick films by aerosol deposition for sensor application , 2009 .

[49]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[50]  P. Vilarinho,et al.  Low-Temperature Hydrothermal Deposition of (BaxSr1−x)TiO3 Thin Films on Flexible Polymeric Substrates for Embedded Applications , 2009 .

[51]  G. Goh,et al.  Growth and dielectric properties of BaTiO3 thin films prepared by the microwave-hydrothermal method , 2008 .

[52]  Kenji Matsumoto,et al.  Fabrication and Electrical Properties of Potassium Niobate Ferroelectric Ceramics , 2007 .

[53]  J. Zhai,et al.  Dielectric and optical properties of BaTiO3 thin films prepared by low-temperature process , 2007 .

[54]  K. Kwok,et al.  Preparation and properties of sol-gel-derived Bi0.5Na0.5TiO3 lead-free ferroelectric thin film , 2007 .

[55]  Thomas R. Shrout,et al.  Lead-free piezoelectric ceramics: Alternatives for PZT? , 2007, Progress in Advanced Dielectrics.

[56]  F. Lu,et al.  Epitaxial growth of BaTiO3 films on TiN∕Si substrates by a hydrothermal-galvanic couple method , 2007 .

[57]  Wei Gao,et al.  PIEZOELECTRIC PROPERTIES OF PZT FILMS PREPARED BY HYDROTHERMAL METHOD , 2006 .

[58]  Joachim Mayer,et al.  Structural investigations of Pt∕TiOx electrode stacks for ferroelectric thin film devices , 2006 .

[59]  T. Morita,et al.  Piezoelectric Performance and Domain Structure of Epitaxial PbTiO3 Thin Film Deposited by Hydrothermal Method , 2006 .

[60]  Woo Y. Lee,et al.  Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications. , 2006, Small.

[61]  G. Goh,et al.  Hydrothermal epitaxy of KNbO3 thin films and nanostructures , 2006 .

[62]  Ho-yong Lee,et al.  Growth of epitaxial Pb(Zr,Ti)O3 films on Ba(Zr,Ti)O3 single crystals by hydrothermal synthesis , 2005 .

[63]  Seok-Jin Yoon,et al.  Properties of piezoelectric actuator on silicon membrane, prepared by screen printing method , 2005 .

[64]  X. X. Wang,et al.  (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics with simultaneous addition of CeO2 and La2O3 , 2005 .

[65]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[66]  Yasuo Cho,et al.  Epitaxial PbTiO3 Thin Films on SrTiO3(100) and SrRuO3/SrTiO3(100) Substrates Deposited by a Hydrothermal Method , 2004 .

[67]  N. Setter,et al.  Lead Free Piezoelectric Materials , 2004 .

[68]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[69]  W. Suchanek Synthesis of Potassium Niobiate (KNbO3) Thin Films by Low‐Temperature Hydrothermal Epitaxy. , 2004 .

[70]  W. Suchanek Synthesis of Potassium Niobiate (KNbO3) Thin Films by Low-Temperature Hydrothermal Epitaxy , 2004 .

[71]  Hajime Nagata,et al.  Large Piezoelectric Constant and High Curie Temperature of Lead-Free Piezoelectric Ceramic Ternary System Based on Bismuth Sodium Titanate-Bismuth Potassium Titanate-Barium Titanate near the Morphotropic Phase Boundary , 2003 .

[72]  N. Padture,et al.  Hydrothermal Synthesis of Thin Films of Barium Titanate Ceramic Nano‐Tubes at 200°C , 2003 .

[73]  P. Pernod,et al.  PZT films deposited by a hydrothermal method and characterizations , 2003 .

[74]  E. Slamovich,et al.  Microstructure development and dielectric properties of hydrothermal BaTiO3 thin films , 2003 .

[75]  R. Poyato,et al.  Texture Development in Modified Lead Titanate Thin Films Obtained by Chemical Solution Deposition on Silicon‐Based Substrates , 2003 .

[76]  Nicolas Ledermann,et al.  {1 0 0}-Textured, piezoelectric Pb(Zrx, Ti1−x)O3 thin films for MEMS: integration, deposition and properties , 2003 .

[77]  T. Ren,et al.  Piezoelectric and ferroelectric films for microelectronic applications , 2003 .

[78]  Yueping Zhang,et al.  Lead-free piezoelectric ceramics with composition of (0.97−x)Na1/2Bi1/2TiO3-0.03NaNbO3-xBaTiO3 , 2003 .

[79]  L. E. Mccandlish,et al.  Influence of precursor on microstructure and phase composition of epitaxial hydrothermal PbZr0.7Ti0.3O3 films , 2003 .

[80]  J. Zhai,et al.  Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films grown on the highly oriented LaNiO3 buffered Pt/Ti/SiO2/Si substrates , 2003 .

[81]  K. Shimada,et al.  Chemical Transformation of Leustroducsins: Synthesis of Leustroducsin B. , 2002 .

[82]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless remote power supply , 2002 .

[83]  M. Yoshimura Soft Solution Processing: Environmentally Benign Direct Fabrication of Shaped Ceramics (Nanocrystals, Whiskers, Films, and/or Patterns) Without Firing. , 2001 .

[84]  Dazhi Yang,et al.  New synthesis method to improve the properties of PbTiO3/NiTi composite film , 2000 .

[85]  H. Kong,et al.  Hydrothermal preparation of BaTiO3 thin films , 2000 .

[86]  T. Higuchi,et al.  Performance of hydrothermal PZT film on high intensity operation , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[87]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[88]  K. Yamanouchi,et al.  Observation of Ferroelectric Polarization in KNbO3 Thin Films and Surface Acoustic Wave Properties , 1999 .

[89]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[90]  M. Yoshimura Importance of soft solution processing for advanced inorganic materials , 1998 .

[91]  Young-Min Kang,et al.  Preparation of epitaxial PbTiO3 thin films by pulsed laser deposition , 1998 .

[92]  M. Yoshimura,et al.  In situ fabrication of morphology-controlled advanced ceramic materials by Soft Solution Processing , 1997 .

[93]  M. Yoshimura What, How, and Why Soft and Solution Processing for Advanced Inorganic Materials , 1997 .

[94]  Nava Setter,et al.  Piezoelectric properties of Ca‐modified PbTiO3 thin films , 1996 .

[95]  Yi Xie,et al.  A Benzene-Thermal Synthetic Route to Nanocrystalline GaN , 1996, Science.

[96]  James S. Speck,et al.  Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. III. Interfacial defects and domain misorientations , 1995 .

[97]  P. Renaud,et al.  Piezoelectric Cantilever Beams Actuated By PZT Sol-gel Thin Film , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[98]  James S. Speck,et al.  DOMAIN CONFIGURATIONS DUE TO MULTIPLE MISFIT RELAXATION MECHANISMS IN EPITAXIAL FERROELECTRIC THIN FILMS. I: THEORY , 1994 .

[99]  James S. Speck,et al.  Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. II. Experimental verification and implications , 1994 .

[100]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[101]  H. Ohkuma,et al.  Preparation of Y-Ba-Cu-O Thin Films by Rf-Magnetron Sputtering , 1987 .

[102]  J. B. Blum,et al.  Sol-gel-derived PbTiO3 , 1985 .

[103]  J. B. Blum,et al.  Sol-gel derived PbTiO3 , 1985 .

[104]  T. Bailey,et al.  Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam , 1985 .

[105]  Akira Kawabata,et al.  Characterization of ZnO piezoelectric films prepared by rf planar‐magnetron sputtering , 1980 .

[106]  R. W. Moore A METHOD OF GROWING LARGE PERFECT CRYSTALS FROM SOLUTION. , 1919 .

[107]  K. Uchino The Development of Piezoelectric Materials and the New Perspective , 2010 .

[108]  K. Kusukawa,et al.  Synthesis and Characterization of Piezoelectric (Bi1/2Na1/2)TiO3 Films by a Hydrothermal Method , 2009 .

[109]  Paul Muralt,et al.  Micromachined Ultrasonic Transducers and Acoustic Sensors Based on Piezoelectric Thin Films , 2004 .

[110]  S. Trolier-McKinstry,et al.  Thin Film Piezoelectrics for MEMS , 2004 .

[111]  Z. Zhi Sol-Gel Method for Preparation of Perovskite-type Ferroelectric Thin Films , 2002 .

[112]  Kun Li,et al.  Low temperature preparation of barium titanate thin films by a novel sol–gel–hydrothermal method , 1999 .

[113]  S. Feng,et al.  The influence of anions on the products of BaTiO3 under hydrothermal conditions , 1996, Journal of Materials Science.

[114]  K. Ioku,et al.  Development of solubility measurement method under hydrothermal conditions , 1993 .

[115]  G. Lippmann Principe de la conservation de l'électricité, ou second principe de la théorie des phénomènes électriques , 1881 .

[116]  P. Curie,et al.  Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées , 1880 .

[117]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .