A limit field for orthogonal range searches in two-dimensional random point search trees

We consider the cost of general orthogonal range queries in random quadtrees. The cost of a given query is encoded into a (random) function of four variables which characterize the coordinates of two opposite corners of the query rectangle. We prove that, when suitably shifted and rescaled, the random cost function converges uniformly in probability towards a random field that is characterized as the unique solution to a distributional fixed-point equation. We also state similar results for $2$-d trees. Our results imply for instance that the worst case query satisfies the same asymptotic estimates as a typical query, and thereby resolve an old question of Chanzy, Devroye and Zamora-Cura [\emph{Acta Inf.}, 37:355--383, 2000]

[1]  Jon Louis Bentley,et al.  Data Structures for Range Searching , 1979, CSUR.

[2]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[3]  Henning Sulzbach,et al.  On a functional contraction method , 2012, ArXiv.

[4]  Conrado Martínez,et al.  Randomized K-Dimensional Binary Search Trees , 1998, ISAAC.

[5]  Luc Devroye,et al.  Squarish k-d Trees , 2000, SIAM J. Comput..

[6]  Hsien-Kuei Hwang,et al.  Partial Match Queries in Random k-d Trees , 2006, SIAM J. Comput..

[7]  Philippe Flajolet,et al.  Partial match retrieval of multidimensional data , 1986, JACM.

[8]  Nicolas Broutin,et al.  A limit process for partial match queries in random quadtrees , 2012, ArXiv.

[9]  Uwe Rösler,et al.  The contraction method for recursive algorithms , 2001, Algorithmica.

[10]  J. Kiefer,et al.  Asymptotic Minimax Character of the Sample Distribution Function and of the Classical Multinomial Estimator , 1956 .

[11]  Philippe Flajolet,et al.  Search costs in quadtrees and singularity perturbation asymptotics , 1994, Discret. Comput. Geom..

[12]  J. Kiefer,et al.  On the deviations of the empiric distribution function of vector chance variables , 1958 .

[13]  Luc Devroye Universal Limit Laws for Depths in Random Trees , 1998, SIAM J. Comput..

[14]  Gaston H. Gonnet,et al.  Analytic variations on quadtrees , 2005, Algorithmica.

[15]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[16]  S. Rachev,et al.  Probability metrics and recursive algorithms , 1995, Advances in Applied Probability.

[17]  Nicolas Curien,et al.  Partial match queries in two-dimensional quadtrees: a probabilistic approach , 2010, Advances in Applied Probability.

[18]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[19]  Jon Louis Bentley,et al.  Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.

[20]  Luc Devroye,et al.  An Analysis of Random d-Dimensional Quad Trees , 1990, SIAM J. Comput..

[21]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[22]  Conrado Martínez,et al.  On the Average Performance of Orthogonal Range Search in Multidimensional Data Structures , 2002, ICALP.

[23]  L. Rüschendorf,et al.  A general limit theorem for recursive algorithms and combinatorial structures , 2004 .

[24]  F. Smithies Linear Operators , 2019, Nature.

[25]  U. Rösler A fixed point theorem for distributions , 1992 .

[26]  Nicolas Broutin,et al.  The dual tree of a recursive triangulation of the disk , 2012, ArXiv.

[27]  Nicolas Curien Strong Convergence of Partial Match Queries in Random Quadtrees , 2012, Comb. Probab. Comput..

[28]  Philippe Flajolet,et al.  Hypergeometrics and the Cost Structure of Quadtrees , 1995, Random Struct. Algorithms.

[29]  U. Rösler A limit theorem for "Quicksort" , 1991, RAIRO Theor. Informatics Appl..

[30]  Nicolas Broutin,et al.  Partial match queries in random quadtrees , 2011, SODA.

[31]  Hanan Samet,et al.  Applications of spatial data structures - computer graphics, image processing, and GIS , 1990 .

[32]  William A. Kirk,et al.  Contraction Mappings and Extensions , 2001 .

[33]  Jon Louis Bentley,et al.  Decomposable Searching Problems , 1979, Inf. Process. Lett..

[34]  Luc Devroye,et al.  Analysis of range search for random k-d trees , 2001, Acta Informatica.

[35]  Luc Devroye,et al.  Branching processes in the analysis of the heights of trees , 1987, Acta Informatica.

[36]  Conrado Martínez,et al.  On the average performance of orthogonal range search in multidimensional data structures , 2002, J. Algorithms.