Comparison of identification techniques for fractional models

A comparative study of methods for fractional system identification is presented in this paper. The fractional system is modeled by the help of a non integer integrator which is approximated by a J+1 dimensional modal system composed of an integrator and first order systems. This identification method is compared to other techniques available in the Matlab toolbox. The model parameters are estimated by an output-error technique using a non linear iterative optimization algorithm. Numerical simulations show the performance of the modal approach for modeling and identification.

[1]  Thierry Poinot,et al.  PARAMETER ESTIMATION OF FRACTIONAL MODELS: APPLICATION TO THE MODELING OF DIFFUSIVE SYSTEMS , 2002 .

[2]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[3]  Gérard Montseny,et al.  Diffusive representation of pseudo-differential time-operators , 1998 .

[4]  Robert M. Darling,et al.  On the Short‐Time Behavior of Porous Intercalation Electrodes , 1997 .

[5]  H. Unbehauen,et al.  Identification of continuous systems , 1987 .

[6]  A. Oustaloup,et al.  Utilisation de modèles d'identification non entiers pour la résolution de problèmes inverses en conduction , 2000 .

[7]  Saptarshi Das,et al.  Fractional Order System Identification , 2012 .

[8]  Peter Young,et al.  Parameter estimation for continuous-time models - A survey , 1979, Autom..

[9]  A. Oustaloup La dérivation non entière , 1995 .

[10]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[11]  Alain Oustaloup,et al.  Non Integer Model from Modal Decomposition for Time Domain System Identification , 2000 .

[12]  Rolf Isermann,et al.  Comparison of Some Parameter Estimation Methods for Continuous-time Models , 1988 .

[13]  A. Oustaloup,et al.  Modeling and identification of a non integer order system , 1999, 1999 European Control Conference (ECC).

[14]  Régis Ouvrard,et al.  Parameter Estimation of Fractional Systems: Application to the Modeling of a Lead-Acid Battery , 2000 .

[15]  D. Matignon,et al.  Diffusive Realisations of Fractional Integrodifferential Operators: Structural Analysis Under Approximation , 1998 .

[16]  Jun Lin,et al.  Modélisation et identification des systèmes d'ordre non entier , 2001 .

[17]  Peter C. Young,et al.  Parameter Estimation for Continuous Time Models - A Survey , 1979 .