Land surface skin temperature climatology: benefitting from the strengths of satellite observations

Surface skin temperature observations (Tskin), as obtained by satellite remote sensing, provide useful climatological information of high spatial resolution and global coverage that enhances the traditional ground observations of surface air temperature (Tair) and so, reveal new information about land surface characteristics. This letter analyzes nine years of moderate-resolution imaging spectroradiometer (MODIS) skin temperature observations to present monthly skin temperature diurnal, seasonal, and inter-annual variations at a 0.05° latitude/longitude grid over the global land surface and combines these measurements with other MODIS-based variables in an effort to understand the physical mechanisms responsible for Tskin variations. In particular, skin temperature variations are found to be closely related to vegetation cover, clouds, and water vapor, but to differ from 2 m surface Tair in terms of both physical meaning and magnitude. Therefore, the two temperatures (Tskin and Tair) are complementary in their contribution of valuable information to the study of climate change.

[1]  Ann Henderson-Sellers,et al.  Biosphere-atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model , 1986 .

[2]  W. C. Snyder,et al.  Surface temperature correction for active infrared reflectance measurements of natural materials. , 1996, Applied optics.

[3]  George A. Maul,et al.  Estimation of sea surface temperature from space , 1971 .

[4]  Ann Henderson-Sellers,et al.  Biosphere-atmosphere transfer scheme(BATS) version 1e as coupled to the NCAR community climate model , 1993 .

[5]  J. Norman,et al.  Terminology in thermal infrared remote sensing of natural surfaces , 1995 .

[6]  R. Dickinson,et al.  The Footprint of Urban Areas on Global Climate as Characterized by MODIS , 2005 .

[7]  Ramakrishna R. Nemani,et al.  Asymmetric warming over coastal California and its impact on the premium wine industry , 2001 .

[8]  Fran Li,et al.  Surface temperature and emissivity at various scales: Definition, measurement and related problems , 1995 .

[9]  Bruno Sportisse,et al.  Atmospheric Boundary Layer , 2010 .

[10]  J. Monteith,et al.  Boundary Layer Climates. , 1979 .

[11]  M. Jin ANALYSIS OF LAND SKIN TEMPERATURE USING AVHRR OBSERVATIONS , 2004 .

[12]  Catherine Ottlé,et al.  Analytical parameterization of canopy directional emissivity and directional radiance in the thermal infrared. Application on the retrieval of soil and foliage temperatures using two directional measurements , 1997 .

[13]  P. M. Saunders,et al.  Aerial measurement of sea surface temperature in the infrared , 1967 .

[14]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[15]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[16]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[17]  Robert E. Dickinson,et al.  A Comparison of CCM2-BATS Skin Temperature and Surface-Air Temperature with Satellite and Surface Observations , 1997 .

[18]  Thomas J. Schmugge,et al.  Remote Sensing Observations for the Monitoring of Land-Surface Fluxes and Water Budgets , 1991 .

[19]  Alan H. Strahler,et al.  MODIS bidirectional reflectance distribution function and albedo Climate Modeling Grid products and the variability of albedo for major global vegetation types , 2005 .

[20]  Robert E. Dickinson,et al.  New observational evidence for global warming from satellite , 2002 .

[21]  Thomas J. Schmugge,et al.  Imation of land surface emissivity differences in the split-window channels of AVHRR , 1994 .

[22]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[23]  T. Schmugge,et al.  Recovering Surface Temperature and Emissivity from Thermal Infrared Multispectral Data , 1998 .

[24]  J. Monteith,et al.  Radiative surface temperature and energy balance of a wheat canopy , 1986 .

[25]  E. Njoku Satellite-Derived Sea Surface Temperature: Workshop Comparisons , 1985 .

[26]  José A. Sobrino,et al.  Thermal remote sensing of land surface temperature from satellites: Current status and future prospects , 1995 .

[27]  J. Marshall Shepherd,et al.  Aerosol relationships to warm season clouds and rainfall at monthly scales over east China: Urban land versus ocean , 2008 .

[28]  Krista Gaustad,et al.  ARM CLIMATE MODELING BEST ESTIMATE DATA A New Data Product for Climate Studies , 2010 .

[29]  S. Idso,et al.  An analysis of infrared temperature observations over wheat and calculation of latent heat flux , 1986 .

[30]  M. Jin Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle , 2000 .

[31]  Ping Yang,et al.  Measurements of water vapor and high clouds over the Tibetan Plateau with the Terra MODIS instrument , 2003, IEEE Trans. Geosci. Remote. Sens..

[32]  Z. Wan New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products , 2008 .

[33]  Robert E. Dickinson,et al.  A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared radiances , 2000 .

[34]  Albert A. M. Holtslag,et al.  Flux Parameterization over Land Surfaces for Atmospheric Models , 1991 .

[35]  Z. Li,et al.  Feasibility of land surface temperature and emissivity determination from AVHRR data , 1993 .

[36]  Thomas J. Schmugge,et al.  Land Surface Evaporation , 1991 .

[37]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .

[38]  Carlo Ulivieri,et al.  A split window algorithm for estimating land surface temperature from satellites , 1994 .

[39]  Thomas C. Peterson,et al.  First difference method: Maximizing station density for the calculation of long‐term global temperature change , 1998 .

[40]  J. Garratt The Atmospheric Boundary Layer , 1992 .

[41]  K. Jon Ranson,et al.  The Boreal Ecosystem-Atmosphere Study (BOREAS) : an overview and early results from the 1994 field year , 1995 .

[42]  J. C. Price,et al.  Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer , 1984 .

[43]  C. Prabhakara,et al.  Estimation of sea surface temperature from remote sensing in the 11‐ to 13‐μm window region , 1974 .

[44]  Zhao-Liang Li,et al.  Improvements in the split-window technique for land surface temperature determination , 1994, IEEE Trans. Geosci. Remote. Sens..

[45]  R. Vose,et al.  An Overview of the Global Historical Climatology Network Temperature Database , 1997 .

[46]  Jielun Sun,et al.  Determination of Surface Fluxes from the Surface Radiative Temperature , 1995 .

[47]  A. Prata Land surface temperatures derived from the advanced very high resolution radiometer and the along‐track scanning radiometer: 1. Theory , 1993 .

[48]  S. Running,et al.  Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data , 1989 .

[49]  Piers J. Sellers,et al.  The first International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment - FIFE , 1992 .

[50]  Peter E. Thornton,et al.  Improvements to the Community Land Model and their impact on the hydrological cycle , 2008 .

[51]  Graeme L. Stephens,et al.  Remote Sensing of the Lower Atmosphere: An Introduction , 1994 .

[52]  W. Paul Menzel,et al.  Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[53]  D. Seidel,et al.  Using first differences to reduce inhomogeneity in radiosonde temperature datasets , 2004 .

[54]  S. Liang,et al.  An Improved Land Surface Emissivity Parameter for Land Surface Models Using Global Remote Sensing Observations , 2006 .

[55]  Zhao-Liang Li,et al.  Radiance‐based validation of the V5 MODIS land‐surface temperature product , 2008 .