Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations
暂无分享,去创建一个
Cormac Toher | Stefano Curtarolo | Donald W. Brenner | Pranab Sarker | Jon-Paul Maria | Zsolt Rak | Christina M. Rost | J. Maria | S. Curtarolo | C. Toher | D. Brenner | C. M. Rost | P. Sarker | Mina Lim | M. Lim | Z. Rák
[1] Oleg N. Senkov,et al. Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis (Postprint) , 2013 .
[2] G. Kresse,et al. Ab initio molecular dynamics for liquid metals. , 1993 .
[3] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[4] Marco Buongiorno Nardelli,et al. The AFLOW standard for high-throughput materials science calculations , 2015, 1506.00303.
[5] A. R. Lang,et al. A study of pendellösung fringes in X‐ray diffraction , 1959 .
[6] Douglas L. Irving,et al. A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures , 2015 .
[7] C. Koch,et al. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo , 2015 .
[8] C. Woodward,et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system , 2013 .
[9] Ian R. McDonald,et al. Introduction of the shell model of ionic polarizability into molecular dynamics calculations , 1974 .
[10] Jien-Wei Yeh,et al. High-Entropy Alloys – A New Era of Exploitation , 2007 .
[11] C. M. Rost. Entropy-Stabilized Oxides: Explorations of a Novel Class of Multicomponent Materials. , 2016 .
[12] Sheng Guo,et al. Phase selection rules for cast high entropy alloys: an overview , 2015 .
[13] P. Liaw,et al. Solid‐Solution Phase Formation Rules for Multi‐component Alloys , 2008 .
[14] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[15] Daniel B. Miracle,et al. A New Thermodynamic Parameter to Predict Formation of Solid Solution or Intermetallic Phases in High Entropy Alloys (Postprint) , 2016 .
[16] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .
[17] Yang Wang,et al. Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting High-Entropy Alloys , 2015 .
[18] G. Henkelman,et al. A fast and robust algorithm for Bader decomposition of charge density , 2006 .
[19] D. Dimiduk,et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy , 2012, Journal of Materials Science.
[20] S. Franger,et al. Colossal dielectric constant in high entropy oxides , 2016, 1602.07842.
[21] C. Humphreys,et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .
[22] Ferreira,et al. Special quasirandom structures. , 1990, Physical review letters.
[23] W. Goddard,et al. Charge equilibration for molecular dynamics simulations , 1991 .
[24] K. Dahmen,et al. Microstructures and properties of high-entropy alloys , 2014 .
[25] Daniel B. Miracle,et al. Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys , 2014, JOM.
[26] S. Franger,et al. Room temperature lithium superionic conductivity in high entropy oxides , 2016 .
[27] D. Miracle. Critical Assessment 14: High entropy alloys and their development as structural materials , 2015 .
[28] J. Yeh,et al. High-Entropy Alloys: A Critical Review , 2014 .
[29] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[30] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .