Navigation aids in the search for future high-k dielectrics: Physical and electrical trends

Abstract From experimental literature data on metal oxides combined with theoretical estimates, we present empirical relations for k -values and energy band offset values, that can be used in the search for gate dielectric materials fulfilling the needs of future CMOS generations. Only a few materials investigated so far have properties meeting the demands for k and energy band offset values in the development of CMOS down to 22 nm.

[1]  Guido Groeseneken,et al.  Scaling CMOS: Finding the gate stack with the lowest leakage current , 2005 .

[2]  J. Kim,et al.  AlGaN/GaN metal–oxide–semiconductor high electron mobility transistors using Sc2O3 as the gate oxide and surface passivation , 2003 .

[3]  Chenming Hu,et al.  Direct tunneling leakage current and scalability of alternative gate dielectrics , 2002 .

[4]  R. Grimes,et al.  Dielectric polarizability of ions and the corresponding effective number of electrons , 1998 .

[5]  A. Trusova,et al.  Energy barriers and trapping centers in silicon metal-insulator-semiconductor structures with samarium and ytterbium oxide insulators , 1998 .

[6]  A. Goswami,et al.  Optical properties of praseodymium oxide films , 1975 .

[7]  H. Iwai,et al.  Advanced gate dielectric materials for sub-100 nm CMOS , 2002, Digest. International Electron Devices Meeting,.

[8]  S.M.Sze,et al.  Surface States and Barrier Height of Metal‐Semiconductor Systems , 1965 .

[9]  H. Hwang,et al.  Excellent electrical characteristics of lanthanide (Pr, Nd, Sm, Gd, and Dy) oxide and lanthanide-doped oxide for MOS gate dielectric applications , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[10]  B. Nag Empirical formula for the dielectric constant of cubic semiconductors , 1994 .

[11]  A. Stesmans,et al.  Band alignment between (100)Si and complex rare earth∕transition metal oxides , 2004 .

[12]  Shao Jianda,et al.  Effect of Microstructure of TiO2 Thin Films on Optical Band Gap Energy , 2005 .

[13]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS , 1932 .

[14]  D. Xue,et al.  Dielectric constants of binary rare-earth compounds , 2000 .

[15]  Jürgen Schubert,et al.  Ternary rare-earth metal oxide high-k layers on silicon oxide , 2005 .

[16]  T. C. Mcgill,et al.  Fundamental Transition in the Electronic Nature of Solids , 1969 .

[17]  M. Schlüter Chemical trends of Schottky barriers: A reexamination of some basic ideas , 1978 .

[18]  C. Kittel Introduction to solid state physics , 1954 .

[19]  J. Robertson High dielectric constant oxides , 2004 .

[20]  F. Zhang,et al.  Cerium oxide nanoparticles: Size-selective formation and structure analysis , 2002 .

[21]  H. Iwai,et al.  Characterization of La2 O 3 and Yb2 O 3 Thin Films for High-k Gate Insulator Application , 2003 .

[22]  T. Busani,et al.  The importance of network structure in high-k dielectrics: LaAlO3, Pr2O3, and Ta2O5 , 2005 .

[23]  Hiroshi Iwai,et al.  Silicon integrated circuit technology from past to future , 2002, Microelectron. Reliab..

[24]  H. Iwai,et al.  Composition, chemical structure, and electronic band structure of rare earth Oxide/Si(100) interfacial transition layer , 2004 .

[25]  Shyh Wang,et al.  Fundamentals of semiconductor theory and device physics , 1989 .

[26]  Hiroshi Iwai,et al.  Degradation of high-K LA2O3 gate dielectrics using progressive electrical stress , 2005, Microelectron. Reliab..

[27]  R. D. Shannon Dielectric polarizabilities of ions in oxides and fluorides , 1993 .