Combinatorics, Automata and Number Theory: Infinite words with uniform frequencies, and invariant measures

For infinite words, we study the properties of uniform recurrence, which translates the dynamical property of minimality, and of uniform frequencies, which corresponds to unique ergodicity; more generally, we look at the set of invariant measures of the associated dynamical system. We present some achievements of word combinatorics, initiated by M. Boshernitzan, which allow us to deduce information on these invariant measures from simple combinatorial properties of the words. Then we review some known examples of words with uniform frequencies, and give important examples which do not have uniform frequencies. We finish by hinting how these basic notions have given birth to very deep problems and high achievements in dynamical systems.

[1]  J. C. Oxtoby,et al.  ERGODIC SETS , 2007 .

[2]  W. Veech Measures supported on the set of uniquely ergodic directions of an arbitrary holomorphic 1-form , 1999, Ergodic Theory and Dynamical Systems.

[3]  E. A. Sataev ON THE NUMBER OF INVARIANT MEASURES FOR FLOWS ON ORIENTABLE SURFACES , 1975 .

[4]  Y. Katznelson,et al.  ON UNIQUE ERGODICITY , 2005 .

[5]  Fabien Durand,et al.  Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.

[6]  Jean-Christophe Yoccoz,et al.  Continued Fraction Algorithms for Interval Exchange Maps: an Introduction ? , 2003 .

[7]  M. Boshernitzan A condition for minimal interval exchange maps to be uniquely ergodic , 1985 .

[8]  Sébastien Ferenczi,et al.  Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories , 2003 .

[9]  S. Ferenczi Systems of finite rank , 1997 .

[10]  Karl Petersen,et al.  Dynamical properties of the Pascal adic transformation , 2003, Ergodic Theory and Dynamical Systems.

[11]  Solomon Marcus,et al.  Quasiperiodic infinite words : multi-scale case and dynamical properties , 2006 .

[12]  H. Furstenberg,et al.  Strict Ergodicity and Transformation of the Torus , 1961 .

[13]  Hausdorff dimension for ergodic measures of interval exchange transformations , 2008, 0807.2231.

[14]  Marina Ratner,et al.  On Raghunathan’s measure conjecture , 1991 .

[15]  Pascal Hubert,et al.  Dichotomy for the Hausdorff dimension of the set of nonergodic directions , 2003, 0810.3956.

[16]  Giuseppe Pirillo,et al.  Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..

[17]  A. Rosenthal Strictly ergodic models for non-invertible transformations , 1988 .

[18]  K. Sigmund,et al.  Ergodic Theory on Compact Spaces , 1976 .

[19]  M. Boshernitzan,et al.  A unique ergodicity of minimal symbolic flows with linear block growth , 1984 .

[20]  M. Boshernitzan,et al.  A condition for unique ergodicity of minimal symbolic flows , 1992, Ergodic Theory and Dynamical Systems.

[21]  H. Masur,et al.  A divergent teichmüller geodesic with uniquely ergodic vertical foliation , 2005, math/0501296.

[22]  M. Rahe,et al.  Chacon’s automorphism has minimal self joinings , 1980 .

[23]  W. Veech THE METRIC THEORY OF INTERVAL EXCHANGE TRANSFORMATIONS I. GENERIC SPECTRAL PROPERTIES , 1984 .

[24]  D. Rudolph An example of a measure preserving map with minimal self-joinings, and applications , 1979 .

[25]  H. Masur Interval Exchange Transformations and Measured Foliations , 1982 .

[26]  M. Keane,et al.  Non-ergodic interval exchange transformations , 1977 .

[27]  M. Ratner Horocycle flows, joinings and rigidity of products , 1983 .

[28]  Yitzhak Katznelson,et al.  ON THE ENTROPY OF UNIQUELY ERGODIC TRANSFORMATIONS , 1967 .

[29]  R. Cooke Real and Complex Analysis , 2011 .

[30]  Sébastien Ferenczi,et al.  Rank and symbolic complexity , 1996, Ergodic Theory and Dynamical Systems.

[31]  W. Veech Gauss measures for transformations on the space of interval exchange maps , 1982 .

[32]  W. Veech,et al.  STRICT ERGODICITY IN ZERO DIMENSIONAL DYNAMICAL SYSTEMS AND THE KRONECKER-WEYL THEOREM MOD 20) , 2010 .

[33]  B. Weiss Subshifts of finite type and sofic systems , 1973 .

[34]  Sébastien Ferenczi,et al.  Structure of three-interval exchange transformations III: Ergodic and spectral properties , 2004 .

[35]  Stefano Marmi,et al.  Hölder Regularity of the Solutions of the Cohomological Equation for Roth Type Interval Exchange Maps , 2004, 1407.1776.

[36]  Harvey B. Keynes,et al.  A “minimal”, non-uniquely ergodic interval exchange transformation , 1976 .

[37]  Howard Masur,et al.  Hausdorff dimension of the set of nonergodic foliations of a quadratic differential , 1992 .

[38]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[39]  L. Zamboni,et al.  Structure of K-interval exchange transformations: Induction, trajectories, and distance theorems , 2010 .