Monolithic integration of optical waveguide circuitry with III-V photodetectors for advanced lightwave receivers

Recent progress in monolithic waveguide-photodetector integration on III-V semiconductors for applications in the 0.8-1.6- mu m wavelength range is reviewed. Critical issues for device performance and fabrication are discussed, followed by a description of the underlying optical coupling mechanisms. Tradeoffs between performance and integrability are assessed in detail for vertical and butt coupling and their variants. It is shown how appropriately chosen integration techniques have led to a variety of monolithic devices for advanced lightwave receivers. >

[1]  O. Wada,et al.  Integrated waveguide-photodiodes with large bandwidth and high external quantum efficiency , 1990, IEEE Photonics Technology Letters.

[3]  R. Deri,et al.  Quenching of resonantly enhanced absorption by multimode interference in vertically coupled waveguide photodetectors. , 1992, Optics letters.

[4]  I. Melngailis,et al.  Monolithic integrated InxGa1−xAs Schottky‐barrier waveguide photodetector , 1974 .

[5]  A. C. Carter,et al.  Design and fabrication of monolithically integrated DFB laser-wavelength duplexer transceivers for TPON/BPON access links , 1991 .

[6]  S. D. Perrin,et al.  50 GHz InGaAs edge-coupled PIN photodetector , 1991 .

[7]  G. Winzer,et al.  Wavelength multiplexing components - A review of single-mode devices and their applications , 1984, Journal of Lightwave Technology.

[8]  B. Baur,et al.  High speed waveguide-integrated photodiodes grown by metal organic molecular beam epitaxy , 1992 .

[9]  Osamu Wada,et al.  Optoelectronic integration based on GaAs material , 1988 .

[10]  M. Feit,et al.  Computation of mode properties in optical fiber waveguides by a propagating beam method. , 1980, Applied optics.

[11]  H. Rodler,et al.  High performance balanced heterodyne front end using special fibre coupling scheme , 1991 .

[12]  R. Trommer Monolithic InGaAs photodiode array illuminated through an integrated waveguide , 1985 .

[13]  D. Marcuse Light transmission optics , 1972 .

[14]  H. Fujiwara,et al.  Effects of absorption on the propagation constants of guided modes in an asymmetric slab optical waveguide , 1987 .

[15]  O. Wada,et al.  Low-loss monolithic integration of balanced twin-photodetectors with a 3 dB waveguide coupler for coherent lightwave receivers , 1990, IEEE Photonics Technology Letters.

[16]  Ian J. Hodgkinson,et al.  Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides , 1984 .

[17]  J. Bowers,et al.  Efficient single-heterojunction Al/sub 0.27/Ga/sub 0.73/As/GaAs p-i-n photodiodes with 22-GHz bandwidths , 1991 .

[18]  Markus-Christian Amann,et al.  Analysis of a PIN photodiode with integrated waveguide , 1987 .

[19]  B. Broberg,et al.  A novel integrated optics wavelength filter in InGaAsP-InP , 1986 .

[20]  K. Magari,et al.  Polarization insensitive traveling wave type amplifier using strained multiple quantum well structure , 1990, IEEE Photonics Technology Letters.

[21]  Joseph M. Ballantyne,et al.  An integrated photoconductive detector and waveguide structure , 1980 .

[22]  A. Kozen,et al.  22 GHz photodiode monolithically integrated with optical waveguide on semi-insulating InP using novel butt-joint structure , 1992 .

[23]  Operation of integrated InGaAsP-InP optical amplifier-monitoring detector with feedback control circuit , 1990, IEEE Photonics Technology Letters.

[24]  Marko Erman,et al.  Monolithic integration of a GaInAs p-i-n photodiode and an optical waveguide: modeling and realization using chloride vapor phase epitaxy , 1988 .

[25]  J. Vinchant,et al.  Monolithic integration of a thin and short metal‐semiconductor‐metal photodetector with a GaAlAs optical inverted rib waveguide on a GaAs semi‐insulating substrate , 1989 .

[26]  C. J. Anderson,et al.  A GaAs MESFET IC for optical multiprocessor networks , 1989 .

[27]  D. Wake A 1550-nm millimeter-wave photodetector with a bandwidth-efficiency product of 2.4 THz , 1992 .

[28]  Ronald D. Esman,et al.  Observation of photodetector nonlinearities , 1992 .

[29]  D. Remiens,et al.  Application of AP MOVPE to a new butt-coupling scheme , 1991 .

[30]  Osamu Wada,et al.  High-performance, high-reliability InP/GaInAS p-i-n photodiodes and flip-chip integrated receivers for lightwave communications , 1991 .

[31]  Gerhard Winzer,et al.  Monolithically Integrated Detector Chip for a Two-Channel Unidirectional WDM Link at 1.5 µm , 1990, IEEE J. Sel. Areas Commun..

[32]  G. Heise,et al.  Grating spectrograph integrated with photodiode array in InGaAsP/InGaAs/InP , 1992, IEEE Photonics Technology Letters.

[33]  Uziel Koren,et al.  Wavelength selective interlayer directionally grating‐coupled InP/InGaAsP waveguide photodetection , 1987 .

[34]  T. Pearsall,et al.  Chapter 2 Compound Semiconductor Photodiodes , 1985 .

[35]  A. Yariv,et al.  Chapter 2 Integrated Electronic and Photonic Devices , 1985 .

[36]  W.-P. Hong,et al.  Monolithically integrated waveguide-MSM detector-HEMT amplifier receiver for long-waveguide lightwave systems , 1991, IEEE Photonics Technology Letters.

[37]  1.3 μm monolithically integrated waveguide‐interdigitated metal‐semiconductor‐metal photodetector on a GaAs substrate , 1990 .

[38]  K. Uomi,et al.  High-extinction-ratio MQW electroabsorption-modulator integrated DFB laser fabricated by in-plane bandgap energy control technique , 1992, IEEE Photonics Technology Letters.

[39]  Peter A. Andrekson,et al.  Tunable superlattice p-i-n photodetectors: characteristics, theory, and application , 1988 .

[40]  R. E. Smith,et al.  Mode determination for planar waveguide using the four-sheeted dispersion relation , 1992 .

[41]  J. Merz,et al.  Integrated GaAs‐AlxGa1−xAs injection lasers and detectors with etched reflectors , 1977 .

[42]  H. Leblanc,et al.  High‐speed metal‐semiconductor‐metal waveguide photodetector on InP , 1989 .

[43]  C. Caneau,et al.  Ultracompact monolithic integration of balanced, polarization diversity photodetectors for coherent lightwave receivers , 1992, IEEE Photonics Technology Letters.

[44]  Leonid G. Kazovsky,et al.  Phase- and polarization-diversity coherent optical techniques , 1989 .

[45]  W. Doldissen,et al.  Butt coupled photodiodes integrated with Y-branched optical waveguides on InP , 1989 .

[46]  A. Yariv,et al.  Proton-implanted optical waveguide detectors in GaAs , 1973 .

[47]  M. Tacke,et al.  The complex propagation constant of multilayer waveguides: an algorithm for a personal computer , 1990 .

[48]  Carsten Bornholdt,et al.  Waveguide-integrated pin photodiode on InP , 1987 .

[49]  R J Hawkins,et al.  Optical power transfer in vertically integrated impedance-matched waveguide/photodetectors: physics and implications for diode-length reduction. , 1991, Optics letters.

[50]  E Garmire,et al.  Analysis of absorbing and leaky planar waveguides: a novel method. , 1989, Optics letters.

[51]  E. Kapon,et al.  Low-loss III-V semiconductor optical waveguides , 1991 .

[52]  M. Oron,et al.  Simple in-line bi-directional 1.5/spl mu/m/1.3 /spl mu/m transceivers , 1990, 12th IEEE International Conference on Semiconductor Laser.

[53]  D. Landheer,et al.  Ridge waveguide quantum-well wavelength division demultiplexing detector with four channels , 1992, IEEE Photonics Technology Letters.

[54]  T. Koch,et al.  InGaAs/InGaAsP Integrated Tunable Detector Grown By Chemical Beam Epitaxy , 1992, Summer Topical Meeting Digest on Broadband Analog and Digital Optoelectronics, Optical Multiple Access Networks, Integrated Optoelectronics, Smart Pixels.

[55]  U. Koren,et al.  Optoelectronic properties of InGaAs/InGaAsP multiple-quantum-well waveguide detectors , 1989, IEEE Photonics Technology Letters.

[56]  Uziel Koren,et al.  Semiconductor photonic integrated circuits , 1991, Integrated Photonics Research.

[57]  J. Vinchant,et al.  Electron-hole pair generation rate of a monolithic integrated waveguide/photodetector: application to the modeling of monolithic integrated waveguide/p-i-n photodiodes , 1990 .

[58]  O. Wada,et al.  Integrated waveguide/photodiodes using vertical impedance matching , 1990 .

[59]  G. McWright,et al.  Measurement and Analysis of Periodic Coupling in Silicon-Clad Planar Waveguides , 1982 .

[60]  Nicholas C. Andreadakis,et al.  Ultracompact monolithic integration of polarization diversity waveguide/photodiodes , 1991 .

[61]  Mk Meint Smit,et al.  High-performance monomode planar couplers using a short multi-mode interference section , 1991 .

[62]  A. Umbach,et al.  Integrated wavelength demultiplexer‐receiver on InP , 1992 .

[63]  F. G. Storz,et al.  Balanced dual photodiodes integrated with a 3 dB directional coupler for coherent lightwave receivers , 1988 .

[65]  J. Viallet,et al.  Photodiode for Coherent Detection: Modeling and Experimental Results , 1988, ESSDERC '88: 18th European Solid State Device Research Conference.

[66]  S. Chandrasekhar,et al.  Monolithic integrated InGaAsP/InP distributed feedback laser with Y-branching waveguide and a monitoring photodetector grown by metalorganic chemical vapor deposition , 1989 .

[67]  H. Leblanc,et al.  Butt‐coupled InGaAs metal‐semiconductor‐metal waveguide photodetector formed by selective area regrowth , 1990 .

[68]  D. Trommer,et al.  Critical issues in the MBE growth of Ga0.47In0.53As for waveguide/PIN/JFET integration , 1991 .

[69]  R. Dupuis,et al.  Two-wavelength disordered quantum-well photodetector , 1988 .

[70]  P. Melman,et al.  Metal-semiconductor-metal demultiplexing waveguide photodetectors in InGaAs/GaAs quantum well structures by selective bandgap tuning , 1991, IEEE Photonics Technology Letters.

[71]  Y. Kondo,et al.  Monolithic integrated coherent receiver on InP substrate , 1989, IEEE Photonics Technology Letters.

[72]  M. Oron,et al.  Balanced operation of a GaInAs/GaInAsP multiple-quantum-well integrated heterodyne receiver , 1990 .

[73]  C. Rigo,et al.  Monolithic integrated InGaAlAs/InP ridge waveguide photodiodes for 1.55 μm operation grown by molecular beam epitaxy , 1987 .

[74]  K. Kato,et al.  Highly efficient 40 GHz waveguide InGaAs p-i-n photodiode employing multimode waveguide structure , 1991, IEEE Photonics Technology Letters.

[75]  Sethumadhavan Chandrasekhar,et al.  Monolithic integrated waveguide photodetector , 1987 .

[76]  Design of high-speed and high-sensitivity photodiode with an input optical waveguide on semi-insulating InP substrate , 1992, LEOS 1992 Summer Topical Meeting Digest on Broadband Analog and Digital Optoelectronics, Optical Multiple Access Networks, Integrated Optoelectronics, and Smart Pixels.

[77]  G. Stewart Optical Waveguide Theory , 1983, Handbook of Laser Technology and Applications.

[78]  Osamu Wada,et al.  Impedance matching for enhanced waveguide/photodetector integration , 1989 .

[79]  M. Dentan,et al.  Numerical simulation of the nonlinear response of a p-i-n photodiode under high illumination , 1990 .

[80]  J. Bowers,et al.  Ultrawide-band long-wavelength p-i-n photodetectors , 1987 .

[81]  J. Chyi,et al.  Resonant cavity-enhanced (RCE) photodetectors , 1991 .

[82]  C. A. Burrus,et al.  Improved Two Wavelength Demultiplexing InGaAsP Photodetector , 1980, Integrated and Guided Wave Optics.

[83]  D. Remiens,et al.  Application of organometallic vapor phase epitaxy on patterned substrates for a new monolithic laser waveguide butt coupling technique , 1989 .

[84]  Uziel Koren,et al.  Electric field screening by photogenerated holes in multiple quantum wells: A new mechanism for absorption saturation , 1990 .

[85]  John E. Bowers,et al.  High-speed zero-bias waveguide photodetectors , 1986 .

[86]  U. Koren,et al.  Balanced operation of a GaInAs/GaInAsP multiple-quantum-well integrated heterodyne receiver , 1989, IEEE Photonics Technology Letters.

[87]  G. Abbas,et al.  A dual-detector optical heterodyne receiver for local oscillator noise suppression , 1985, Journal of Lightwave Technology.

[88]  A. Splett,et al.  Waveguide/photodetector combination in SiGe for long wavelength operation , 1992 .

[89]  Toshihiko Baba,et al.  Monolithic integration of an ARROW-type demultiplexer and photodetector in the shorter wavelength region , 1990 .

[90]  Shyh Wang,et al.  Chapter 1 Principles and Characteristics of Integratable Active and Passive Optical Devices , 1985 .

[91]  David J. Webb,et al.  Special Issue Papers Full-Wafer Technology-A New Approach to Large-scale Laser Fabrication and Integration , 1991 .

[92]  Mk Meint Smit,et al.  Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference , 1991 .

[94]  L. M. Schiavone,et al.  Efficient vertical coupling of photodiodes to InGaAsP rib waveguides , 1991 .

[95]  Y. Kokubun,et al.  High efficiency light coupling from antiresonant reflecting optical waveguide to integrated photodetector using an antireflecting layer. , 1990, Applied optics.

[96]  T. Bridges,et al.  Integrated directional couplers with photodetectors by hydride vapour phase epitaxy , 1988 .

[97]  J. Soole,et al.  InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications , 1991 .

[98]  Nicholas C. Andreadakis,et al.  Fast high‐efficiency integrated waveguide photodetectors using novel hybrid vertical/butt coupling geometry , 1992 .

[99]  Osamu Wada,et al.  High-speed monolithic coherent optical receiver integrated on InP substrate , 1991 .

[100]  Jean-Pierre Vilcot,et al.  Effects of absorbing layers on the propagation constants: A four layer model on desktop-computer applied to photodetectors monolithically integrated with optical waveguides , 1988 .