Empirical and sequential empirical copula processes under serial dependence

Empirical and sequential empirical copula processes play a central role for statistical inference on copulas. However, as pointed out by Johan Segers [J. Segers, Asymptotics of empirical copula processes under non-restrictive smoothness assumptions, Bernoulli 18 (3) (2012) 764–782] the usual assumptions under which these processes have been studied so far are too restrictive. In this paper, we provide a unified approach to the analysis of empirical and sequential empirical copula processes that circumvents those restrictive assumptions in a very general setting. In particular, our methods allow for an easy analysis of copula processes and appropriate bootstrap approximations in the setting of sequentially dependent data. One particularly useful finding is that certain sequential empirical copula processes converge without any smoothness assumptions on the copula.

[1]  E. Rio,et al.  Théorie asymptotique de processus aléatoires faiblement dépendants , 2000 .

[2]  Herold Dehling,et al.  Empirical processes of multidimensional systems with multiple mixing properties , 2010, 1004.1088.

[3]  Friedrich Schmid,et al.  Multivariate Extensions of Spearman's Rho and Related Statistics , 2007 .

[4]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[5]  Peter Lukas Bühlmann,et al.  The blockwise bootstrap in time series and empirical processes , 1993 .

[6]  Olivier Scaillet,et al.  Testing for Equality between Two Copulas , 2006, J. Multivar. Anal..

[7]  Bruno Rémillard,et al.  Copula-Based Semiparametric Models for Multivariate Time Series , 2011, J. Multivar. Anal..

[8]  B. Rémillard,et al.  Test of independence and randomness based on the empirical copula process , 2004 .

[9]  Christian Genest,et al.  Tests of symmetry for bivariate copulas , 2011, Annals of the Institute of Statistical Mathematics.

[10]  Av. Pierre Larousse An Empirical Central Limit Theorem with applications to copulas under weak dependence , 2009 .

[11]  Olivier Durieu,et al.  An Empirical Process Central Limit Theorem for Multidimensional Dependent Data , 2011, 1110.0963.

[12]  D. Pollard Convergence of stochastic processes , 1984 .

[13]  Dominik Wied,et al.  A fluctuation test for constant Spearman’s rho , 2011 .

[14]  R. Nelsen An Introduction to Copulas , 1998 .

[15]  Ludger Rüschendorf,et al.  Asymptotic Distributions of Multivariate Rank Order Statistics , 1976 .

[16]  Jean-David Fermanian,et al.  An empirical central limit theorem with applications to copulas under weak dependence , 2009 .

[17]  J. Segers Asymptotics of empirical copula processes under non-restrictive smoothness assumptions , 2010, 1012.2133.

[18]  P. Gaenssler,et al.  Seminar on Empirical Processes , 1987 .

[19]  H. Tsukahara,et al.  Semiparametric estimation in copula models , 2005 .

[20]  Holger Dette,et al.  A note on bootstrap approximations for the empirical copula process , 2010 .

[21]  Domenico Marinucci The Empirical Process for Bivariate Sequences with Long Memory , 2005 .

[22]  Walter Philipp,et al.  Almost sure approximation theorems for the multivariate empirical process , 1980 .

[23]  Jon A. Wellner,et al.  Empirical processes indexed by estimated functions , 2007, 0709.1013.

[24]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[25]  Jean-David Fermanian,et al.  Weak convergence of empirical copula , 2004 .

[26]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[27]  A. Mokkadem Mixing properties of ARMA processes , 1988 .

[28]  M. Kosorok Introduction to Empirical Processes and Semiparametric Inference , 2008 .

[29]  P. Massart,et al.  Invariance principles for absolutely regular empirical processes , 1995 .

[30]  Martin Ruppert,et al.  Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique , 2012, J. Multivar. Anal..

[31]  B. Rémillard Goodness-of-Fit Tests for Copulas of Multivariate Time Series , 2010 .