Metric cotype

We introduce the notion of <i>metric cotype</i>, a property of metric spaces related to a property of normed spaces, called <i>Rademacher cotype</i>. Apart from settling a long standing open problem in metric geometry, this property is used to prove the following dichotomy: A family of metric spaces <i>F</i> is either almost universal (i.e., contains any finite metric space with any distortion > 1), or there exists α > 0, and arbitrarily large <i>n</i>-point metrics whose distortion when embedded in any member of <i>F</i> is at least Ω((log <i>n</i>)<sup>α</sup>). The same property is also used to prove strong non-embeddability theorems of <i>L</i><inf><i>q</i></inf> into <i>L</i><inf><i>p</i></inf>, when <i>q</i> > max{2, <i>p</i>}. Finally we use metric cotype to obtain a new type of isoperimetric inequality on the discrete torus.

[1]  Keith Ball,et al.  Markov chains, Riesz transforms and Lipschitz maps , 1992 .

[2]  Nathan Linial,et al.  Girth and euclidean distortion , 2002, STOC '02.

[3]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[4]  William B. Johnson,et al.  On bases, finite dimensional decompositions and weaker structures in Banach spaces , 1971 .

[5]  Israel Aharoni,et al.  Every separable metric space is Lipschitz equivalent to a subset ofc0+ , 1974 .

[6]  Guoliang Yu,et al.  The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space , 2000 .

[7]  G. Pisier,et al.  Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach , 1976 .

[8]  J. Matousek,et al.  Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces , 1992 .

[9]  D. Amir Characterizations of Inner Product Spaces , 1986 .

[10]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[11]  V. Lafforgue,et al.  Uniform Embeddings into Hilbert Space and a Question of Gromov , 2002, Canadian Mathematical Bulletin.

[12]  Imre Brny LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) By JI MATOUEK: 481 pp., 31.50 (US$39.95), ISBN 0-387-95374-4 (Springer, New York, 2002). , 2003 .

[13]  Jean Bourgain,et al.  On type of metric spaces , 1986 .

[14]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[15]  Jirí Matousek,et al.  Low-Distortion Embeddings of Finite Metric Spaces , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[16]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[17]  Gilles Pisier,et al.  Some results on Banach spaces without local unconditional structure , 1978 .

[18]  G. Pisier Probabilistic methods in the geometry of Banach spaces , 1986 .

[19]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[20]  P. Enflo On infinite-dimensional topological groups , 1978 .

[21]  Stefan Heinrich,et al.  Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces , 1982 .

[22]  Santosh S. Vempala,et al.  Local versus global properties of metric spaces , 2006, SODA '06.

[23]  N. Linial,et al.  Low distortion euclidean embeddings of trees , 1998 .

[24]  G. Pisier Factorization of Linear Operators and Geometry of Banach Spaces , 1986 .

[25]  J. M. Sek On embedding trees into uniformly convex Banach spaces , 1999 .

[26]  G. Schechtman,et al.  Remarks on non linear type and Pisier's inequality , 2002 .

[27]  Jean Bourgain,et al.  On hilbertian subsets of finite metric spaces , 1986 .

[28]  J. Bourgain,et al.  Remarks on the extension of lipschitz maps defined on discrete sets and uniform homeomorphisms , 1987 .

[29]  Joram Lindenstrauss Uniform embeddings, homeomorphisms and quotient maps between Banach spaces (a short survey) , 1997 .

[30]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[31]  P. Enflo On the nonexistence of uniform homeomorphisms betweenLp-spaces , 1970 .

[32]  Yair Bartal,et al.  Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[33]  Y. Peres,et al.  Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.

[34]  Nigel J. Kalton,et al.  Banach spaces embedding intoL0 , 1985 .

[35]  Per Enflo Topological Groups in Which Multiplication on One Side is Differentiable or Linear. , 1969 .

[36]  Nathan Linial Finite metric spaces: combinatorics, geometry and algorithms , 2002, SCG '02.

[37]  P. Enflo Uniform structures and square roots in topological groups , 1970 .

[38]  B. Mityagin,et al.  Uniform embeddings of metric spaces and of banach spaces into hilbert spaces , 1985 .

[39]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[40]  Anupam Gupta,et al.  Cuts, Trees and ℓ1-Embeddings of Graphs* , 2004, Comb..

[41]  Satish Rao,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.

[42]  Joram Lindenstrauss,et al.  On nonlinear projections in Banach spaces. , 1964 .

[43]  Assaf Naor,et al.  A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between Lp spaces , 2001 .

[44]  Stanisław Kwapień,et al.  Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients , 1972 .

[45]  Michel Talagrand,et al.  Type and Cotype of Banach Spaces , 1991 .

[46]  M. Gromov Filling Riemannian manifolds , 1983 .

[47]  J. Bourgain The metrical interpretation of superreflexivity in banach spaces , 1986 .

[48]  C. Morawetz The Courant Institute of Mathematical Sciences , 1988 .

[49]  L. Tzafriri,et al.  On the type and cotype of Banach spaces , 1979 .

[50]  Nathan Linial,et al.  Girth and Euclidean distortion , 2002 .

[51]  L. Tzafriri,et al.  Some estimates for type and cotype constants , 1981 .

[52]  Yuval Peres,et al.  Trees and Markov Convexity , 2006, SODA '06.

[53]  W. Johnson,et al.  Characterization of quasi-Banach spaces which coarsely embed into a Hilbert space , 2004, math/0411269.

[54]  J. Lindenstrauss,et al.  Handbook of geometry of Banach spaces , 2001 .

[55]  A. Naor,et al.  Euclidean quotients of finite metric spaces , 2004, math/0406349.

[56]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[57]  Gilles Pisier,et al.  Holomorphic semi-groups and the geometry of Banach spaces , 1982 .

[58]  Assaf Naor,et al.  Some applications of Ball’s extension theorem , 2006, Proceedings of the American Mathematical Society.

[59]  Leon W. Cohen,et al.  Conference Board of the Mathematical Sciences , 1963 .

[60]  Piotr Indyk,et al.  Algorithmic applications of low-distortion geometric embeddings , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[61]  J. Wells,et al.  Embeddings and Extensions in Analysis , 1975 .

[62]  Anupam Gupta Embedding Tree Metrics into Low-Dimensional Euclidean Spaces , 2000, Discret. Comput. Geom..

[63]  G. J. O. Jameson,et al.  ABSOLUTELY SUMMING OPERATORS (Cambridge Studies in Advanced Mathematics 43) By Joe Diestel, Hans Jarchow and Andrew Tonge: 474 pp., £40.00 (US$59.95), ISBN 0 521 43168 9 (Cambridge University Press, 1995). , 1997 .

[64]  M. Ribe,et al.  On uniformly homeomorphic normed spaces II , 1976 .

[65]  M. Talagrand An isoperimetric theorem on the cube and the Kintchine-Kahane inequalities , 1988 .

[66]  M. Edelstein Review: J. H. Wells and L. R. Williams, Embeddings and extensions in analysis , 1977 .

[67]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[68]  J. Kuelbs Probability on Banach spaces , 1978 .

[69]  Per Enflo,et al.  On a problem of Smirnov , 1970 .

[70]  Noga Alon,et al.  A Graph-Theoretic Game and Its Application to the k-Server Problem , 1995, SIAM J. Comput..

[71]  N. Tomczak-Jaegermann The moduli of smoothness and convexity and the Rademacher averages of the trace classes $S_{p}$ (1≤p<∞) , 1974 .

[72]  N. Tomczak-Jaegermann Banach-Mazur distances and finite-dimensional operator ideals , 1989 .

[73]  W. B. Johnson,et al.  l~p (p > 2) does not coarsely embed into a Hilbert space , 2004 .

[74]  T. Figiel,et al.  The dimension of almost spherical sections of convex bodies , 1976 .

[75]  M. Gromov,et al.  Random walk in random groups , 2003 .

[76]  M. Ribe,et al.  On uniformly homeomorphic normed spaces , 1976 .

[77]  Nathan Linial,et al.  On metric Ramsey-type phenomena , 2004 .

[78]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[79]  Guoliang Yu,et al.  The coarse geometric Novikov conjecture and uniform convexity , 2005 .