Recent Trends in Spintronics-Based Nanomagnetic Logic

With the growing concerns of standby power in sub-100-nm CMOS technologies, alternative computing techniques and memory technologies are explored. Spin transfer torque magnetoresistive RAM (STT-MRAM) is one such nonvolatile memory relying on magnetic tunnel junctions (MTJs) to store information. It uses spin transfer torque to write information and magnetoresistance to read information. In 2012, Everspin Technologies, Inc. commercialized the first 64Mbit Spin Torque MRAM. On the computing end, nanomagnetic logic (NML) is a promising technique with zero leakage and high data retention. In 2000, Cowburn and Welland first demonstrated its potential in logic and information propagation through magnetostatic interaction in a chain of single domain circular nanomagnetic dots of Supermalloy (Ni80Fe14Mo5X1, X is other metals). In 2006, Imre et al. demonstrated wires and majority gates followed by coplanar cross wire systems demonstration in 2010 by Pulecio et al. Since 2004 researchers have also investigated the potential of MTJs in logic. More recently with dipolar coupling between MTJs demonstrated in 2012, logic-in-memory architecture with STT-MRAM have been investigated. The architecture borrows the computing concept from NML and read and write style from MRAM. The architecture can switch its operation between logic and memory modes with clock as classifier. Further through logic partitioning between MTJ and CMOS plane, a significant performance boost has been observed in basic computing blocks within the architecture. In this work, we have explored the developments in NML, in MTJs and more recent developments in hybrid MTJ/CMOS logic-in-memory architecture and its unique logic partitioning capability.

[1]  R. Cowburn,et al.  Single-Domain Circular Nanomagnets , 1999 .

[2]  M. Zamboni,et al.  Majority Voter Full Characterization for Nanomagnet Logic Circuits , 2012, IEEE Transactions on Nanotechnology.

[3]  S. Bhanja,et al.  Probabilistic Modeling of QCA Circuits Using Bayesian Networks , 2006, IEEE Transactions on Nanotechnology.

[4]  H. Ohno,et al.  Fabrication of a Nonvolatile Full Adder Based on Logic-in-Memory Architecture Using Magnetic Tunnel Junctions , 2008 .

[5]  Mariagrazia Graziano,et al.  Asynchrony in Quantum-Dot Cellular Automata Nanocomputation: Elixir or Poison? , 2011, IEEE Design & Test of Computers.

[6]  Mohammad Salehi Fashami,et al.  Magnetization dynamics, Bennett clocking and associated energy dissipation in multiferroic logic. , 2010, Nanotechnology.

[7]  Saied N. Tehrani,et al.  Recent developments in magnetic tunnel junction MRAM , 2000 .

[8]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[9]  Sanjukta Bhanja,et al.  Landauer Clocking for Magnetic Cellular Automata (MCA) Arrays , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[10]  D. Carlton,et al.  Investigation of Defects and Errors in Nanomagnetic Logic Circuits , 2012, IEEE Transactions on Nanotechnology.

[11]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[12]  W. Porod,et al.  On-Chip Clocking of Nanomagnet Logic Lines and Gates , 2012, IEEE Transactions on Nanotechnology.

[13]  Dmitri E. Nikonov,et al.  Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. , 2011, Physical review letters.

[14]  W. Porod,et al.  Magnetic Properties of Enhanced Permeability Dielectrics for Nanomagnetic Logic Circuits , 2012, IEEE Transactions on Magnetics.

[15]  V. Cros,et al.  Spin Transfer Torque: a new method to excite or reverse a magnetization , 2005 .

[16]  Jon M. Slaughter,et al.  Magnetoresistive random access memory using magnetic tunnel junctions , 2003, Proc. IEEE.

[17]  Dmitri E. Nikonov,et al.  Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking , 2013, Proceedings of the IEEE.

[18]  I. N. Krivorotov,et al.  Spin-transfer effects in nanoscale magnetic tunnel junctions , 2004, cond-mat/0404002.

[19]  E. R. Lewis,et al.  Asymmetric magnetic NOT gate and shift registers for high density data storage , 2010 .

[20]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[21]  Sanjukta Bhanja,et al.  Magnetic cellular automata coplanar cross wire systems , 2010 .

[22]  Mircea R. Stan,et al.  The Promise of Nanomagnetics and Spintronics for Future Logic and Universal Memory , 2010, Proceedings of the IEEE.

[23]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[24]  W. Porod,et al.  Magnetic–Electrical Interface for Nanomagnet Logic , 2011, IEEE Transactions on Nanotechnology.

[25]  Sanjukta Bhanja,et al.  Ultra-Low Power Hybrid CMOS-Magnetic Logic Architecture , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  Jian-Gang Zhu,et al.  Magnetic tunnel junctions , 2006 .

[27]  Mariagrazia Graziano,et al.  Towards a molecular QCA wire: Simulation of write-in and read-out systems , 2012 .

[28]  Ralph,et al.  Current-induced switching of domains in magnetic multilayer devices , 1999, Science.

[29]  G.A. Jullien,et al.  A method of majority logic reduction for quantum cellular automata , 2004, IEEE Transactions on Nanotechnology.

[30]  Hui Zhao,et al.  Probing dipole coupled nanomagnets using magnetoresistance read , 2011 .

[31]  H. Ohno,et al.  Magnetic Tunnel Junctions for Spintronic Memories and Beyond , 2007, IEEE Transactions on Electron Devices.

[32]  S. Yuasa,et al.  Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(0 0 1) barrier , 2007 .

[33]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[34]  Michael T. Niemier,et al.  Performance and Energy Impact of Locally Controlled NML Circuits , 2011, JETC.

[35]  W. Porod,et al.  Domain-Wall Assisted Switching of Single-Domain Nanomagnets , 2012, IEEE Transactions on Magnetics.

[36]  Jian-Gang Zhu,et al.  Magnetoresistive Random Access Memory: The Path to Competitiveness and Scalability , 2008, Proceedings of the IEEE.

[37]  Mohmmad T. Alam,et al.  On-Chip Clocking for Nanomagnet Logic Devices , 2010, IEEE Transactions on Nanotechnology.

[38]  Jian-Ping Wang,et al.  Programmable spintronics logic device based on a magnetic tunnel junction element , 2005 .

[39]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[40]  Sanjukta Bhanja,et al.  Nano Magnetic STT-Logic Partitioning for Optimum Performance , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[41]  Yan Zhou,et al.  Spin-torque oscillator with tilted fixed layer magnetization , 2008 .

[42]  Sanjukta Bhanja,et al.  Study of single layer and multilayer nano-magnetic logic architectures , 2012 .

[43]  J. Bokor,et al.  Simulation studies of nanomagnet-based logic architecture. , 2008, Nano letters (Print).

[44]  Mariagrazia Graziano,et al.  Nanomagnetic Logic Microprocessor: Hierarchical Power Model , 2013, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[45]  Ilya Krivorotov,et al.  Low writing energy and sub nanosecond spin torque transfer switching of in-plane magnetic tunnel junction for spin torque transfer random access memory , 2011 .

[46]  Hao Chen,et al.  On the Reliability of Computational Structures Using Majority Logic , 2011, IEEE Transactions on Nanotechnology.

[47]  E. R. Lewis,et al.  Bidirectional magnetic nanowire shift register , 2009 .

[48]  Eric Belhaire,et al.  New non‐volatile logic based on spin‐MTJ , 2008 .

[49]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[50]  Sanjukta Bhanja,et al.  Low Power Magnetic Quantum Cellular Automata Realization Using Magnetic Multi-Layer Structures , 2011, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[51]  G. Csaba,et al.  Majority Gate for Nanomagnetic Logic With Perpendicular Magnetic Anisotropy , 2012, IEEE Transactions on Magnetics.

[52]  Z. Diao,et al.  Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory , 2007 .

[53]  Dominique Givord,et al.  Beating the superparamagnetic limit with exchange bias , 2003, Nature.

[54]  Saket Srivastava,et al.  Hierarchical Probabilistic Macromodeling for QCA Circuits , 2007, IEEE Transactions on Computers.

[55]  V. Roychowdhury,et al.  Performance of Magnetic Quantum Cellular Automata and Limitations Due to Thermal Noise , 2009, IEEE Transactions on Nanotechnology.

[56]  M. Zamboni,et al.  An NCL-HDL Snake-Clock-Based Magnetic QCA Architecture , 2011, IEEE Transactions on Nanotechnology.

[57]  Wolfgang Porod,et al.  Clocking magnetic field-coupled devices by domain walls , 2012 .

[58]  Peng Li,et al.  Direct Measurement of Magnetic Coupling Between Nanomagnets for Nanomagnetic Logic Applications , 2012, IEEE Transactions on Magnetics.

[59]  S. Bhanja,et al.  Magnetic Cellular Automata Wire Architectures , 2011, IEEE Transactions on Nanotechnology.

[60]  Wolfgang Porod,et al.  Nanocomputing by field-coupled nanomagnets , 2002 .

[61]  R. Cowburn,et al.  Magnetic domain wall induced, localized nanowire reversal , 2012 .

[62]  Bernard Dieny,et al.  Magnetotransport properties of magnetically soft spin‐valve structures (invited) , 1991 .