Thermal Tracking of Sports Players

We present here a real-time tracking algorithm for thermal video from a sports game. Robust detection of people includes routines for handling occlusions and noise before tracking each detected person with a Kalman filter. This online tracking algorithm is compared with a state-of-the-art offline multi-target tracking algorithm. Experiments are performed on a manually annotated 2-minutes video sequence of a real soccer game. The Kalman filter shows a very promising result on this rather challenging sequence with a tracking accuracy above 70% and is superior compared with the offline tracking approach. Furthermore, the combined detection and tracking algorithm runs in real time at 33 fps, even with large image sizes of 1920 × 480 pixels.

[1]  Reza Saatchi,et al.  Facial Tracking in Thermal Images for Real-Time Noncontact Respiration Rate Monitoring , 2013, 2013 European Modelling Symposium.

[2]  Thomas B. Moeslund,et al.  Occupancy Analysis of Sports Arenas using Thermal Imaging , 2012, VISAPP.

[3]  Rainer Stiefelhagen,et al.  Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics , 2008, EURASIP J. Image Video Process..

[4]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[5]  Lakhmi C. Jain,et al.  Human Tracking: A State-of-Art Survey , 2010, KES.

[6]  F. Fleuret,et al.  Multiple object tracking using flow linear programming , 2009, 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.

[7]  Patrick Pérez,et al.  Maintaining multimodality through mixture tracking , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[8]  Grzegorz Cielniak,et al.  Real-time people tracking for mobile robots using thermal vision , 2006, Robotics Auton. Syst..

[9]  Konrad Schindler,et al.  Multi-target tracking by continuous energy minimization , 2011, CVPR 2011.

[10]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[11]  Suk Ho Lee,et al.  Human tracking with an infrared camera using a curve matching framework , 2012, EURASIP J. Adv. Signal Process..

[12]  Fredrik Gustafsson,et al.  Pedestrian tracking with an infrared sensor using road network information , 2012, EURASIP J. Adv. Signal Process..

[13]  Thomas B. Moeslund,et al.  Thermal cameras and applications: a survey , 2013, Machine Vision and Applications.

[14]  Michael Arens,et al.  Local Feature Based Person Detection and Tracking Beyond the Visible Spectrum , 2011 .

[15]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[16]  Guillaume-Alexandre Bilodeau,et al.  An iterative integrated framework for thermal-visible image registration, sensor fusion, and people tracking for video surveillance applications , 2012, Comput. Vis. Image Underst..

[17]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Luc Van Gool,et al.  Robust tracking-by-detection using a detector confidence particle filter , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[19]  Reza Saatchi,et al.  Tracking human face features in thermal images for respiration monitoring , 2010, ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010.

[20]  Mimoun Zelmat,et al.  Pedestrian tracking using color, thermal and location cue measurements: a DSmT-based framework , 2011, Machine Vision and Applications.

[21]  Marc Moonen,et al.  Joint DOA and multi-pitch estimation based on subspace techniques , 2012, EURASIP J. Adv. Signal Process..

[22]  Alberto Del Bimbo,et al.  Posterity Logging of Face Imagery for Video Surveillance , 2012, IEEE MultiMedia.

[23]  Pascal Fua,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Multiple Object Tracking Using K-shortest Paths Optimization , 2022 .

[24]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.