Research Environment for Advanced Landsat Monitoring (REALM)

Abstract Landsat-7 science mission requires large-area analysis of land to cover to quantify anthropogenic and natural changes in Earth's terrestrial environment. Such a goal involves processing (and reprocessing) thousands of Enhanced Thematic Mapper Plus (ETM+) scenes, but current analysis methodologies that rely on “handcrafting” individual scenes cannot scale to this data flow. As an alternative, we have constructed a prototype computer system, REALM (Research Environment for Advanced Landsat Monitoring), to automate preprocessing and analysis of large volume of Landsat imagery. Users can submit arbitrary algorithms to the database using a query language to generate science results “on the fly.” The current prototype, running on a cluster of Linux-based PCs, has created a preliminary forest-cover map for the northeastern US from 9 GB of ETM+ data in just 25 min, for an aggregate throughput of 6 MB/s. The exercise demonstrates the processing Landsat data over very large areas is now feasible.

[1]  Darrel L. Williams,et al.  Landsat and Earth Systems Science : Development of terrestrial monitoring , 1997 .

[2]  Mihai Datcu,et al.  Spatial information retrieval from remote-sensing images. I. Information theoretical perspective , 1998, IEEE Trans. Geosci. Remote. Sens..

[3]  Christopher Justice,et al.  The impact of misregistration on change detection , 1992, IEEE Trans. Geosci. Remote. Sens..

[4]  D. Skole,et al.  Landsat pathfinder project advances deforestation mapping , 1994 .

[5]  P. Chavez Image-Based Atmospheric Corrections - Revisited and Improved , 1996 .

[6]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[7]  D. Schimel,et al.  Terrestrial ecosystems and the carbon cycle , 1995 .

[8]  Larry S. Davis,et al.  A High Performance Image Database System for Remotely Sensed Imagery , 1996, Euro-Par, Vol. II.

[9]  Larry S. Davis,et al.  The Design and Evaluation of a High-Performance Earth Science Database , 1998, Parallel Comput..

[10]  E. Vermote,et al.  Operational Atmospheric Correction of Landsat TM Data , 1999 .

[11]  Darrel L. Williams,et al.  Enhanced Landsat capturing all the Earth's land areas , 1999 .

[12]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[13]  P. Molnar,et al.  Active tectonics of Tibet , 1978 .

[14]  H. K. Ramapriyan,et al.  Data and information system for mission to planet earth , 1995 .

[15]  R. Macdonald A summary of the history of the development of automated remote sensing for agricultural applications , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[16]  C. Tucker,et al.  Tropical Deforestation and Habitat Fragmentation in the Amazon: Satellite Data from 1978 to 1988 , 1993, Science.

[17]  R. Kauth,et al.  The tasselled cap - A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat , 1976 .

[18]  George Nagy,et al.  Digital image-processing activities in remote sensing for earth resources , 1972 .

[19]  G. Badhwar,et al.  Automatic corn-soybean classification using Landsat MSS data. I - Near-harvest crop proportion estimation. II - Early season crop proportion estimation , 1984 .

[20]  Joel H. Saltz,et al.  Titan: a high-performance remote-sensing database , 1997, Proceedings 13th International Conference on Data Engineering.

[21]  David M. Mount,et al.  Efficient algorithms for robust feature matching , 1999, Pattern Recognit..

[22]  H. Mooney,et al.  Human Domination of Earth’s Ecosystems , 1997, Renewable Energy.

[23]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[24]  A. R. Harrison,et al.  Standardized principal components , 1985 .

[25]  Richard J. Ballard,et al.  Estimating costs and performance of systems for machine processing of remotely sensed data , 1977 .

[26]  S. Goward Shortwave infrared detection of vegetation , 1985 .

[27]  J. Le Moigne,et al.  Towards a parallel registration of multiple resolution remote sensing data , 1995 .

[28]  David J. DeWitt,et al.  Building a scaleable geo-spatial DBMS: technology, implementation, and evaluation , 1997, SIGMOD '97.

[29]  J. Townshend,et al.  Continuous fields of vegetation characteristics at the global scale at 1‐km resolution , 1999 .

[30]  Terence R. Smith,et al.  The Alexandria Digital Library Testbed , 1996, D-Lib Magazine.

[31]  Michael Stonebraker,et al.  Chabot: Retrieval from a Relational Database of Images , 1995, Computer.

[32]  John R. G. Townshend,et al.  Global data sets for land applications from the Advanced Very High Resolution Radiometer: an introduction , 1994 .