Convexity, complexity, and high dimensions
暂无分享,去创建一个
[1] E. Asplund. Comparison Between Plane Symmetric Convex Bodies and Parallelograms. , 1960 .
[2] M. Murty. Ramanujan Graphs , 1965 .
[3] R. Dudley. The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .
[4] A. Pietsch. Theorie der Operatorenideale (Zusammenfassung) , 1972 .
[5] G. Pisier,et al. Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach , 1976 .
[6] D. R. Lewis. Finite dimensional subspaces of $L_{p}$ , 1978 .
[7] Nicole Tomczak-Jaegermann,et al. On nearly euclidean decomposition for some classes of Banach spaces , 1980 .
[8] G. Pisier,et al. Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert , 1980 .
[9] G. Pisier. Remarques sur un résultat non publié de B. Maurey , 1981 .
[10] Gilles Pisier,et al. Holomorphic semi-groups and the geometry of Banach spaces , 1982 .
[11] I. Miheev,et al. Trigonometric series with gaps , 1983 .
[12] S. Szarek. The finite dimensional basis problem with an appendix on nets of Grassmann manifolds , 1983 .
[13] G. Pisier,et al. Characterizations of almost surely continuousp-stable random Fourier series and strongly stationary processes , 1984 .
[14] C. Schütt. Entropy numbers of diagonal operators between symmetric Banach spaces , 1984 .
[15] V. Milman,et al. Almost Euclidean quotient spaces of subspaces of a finite-dimensional normed space , 1985 .
[16] How well can an $n \times n$ matrix be approximated by reducible ones? , 1986 .
[17] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[18] C. Schütt,et al. Geometric and probabilistic estimates for entropy and approximation numbers of operators , 1987 .
[19] Dualité des nombres d'entropie pour des opérateurs à valeurs dans un espace de Hilbert , 1987 .
[20] On the covering numbers of convex bodies , 1987 .
[21] János Komlós,et al. Deterministic simulation in LOGSPACE , 1987, STOC.
[22] V. Milman,et al. A few observations on the connections between local theory and some other fields , 1988 .
[23] Jean Bourgain,et al. The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization , 1988 .
[24] Alain Pajor,et al. Volume Ratio and Other s-Numbers of Operators Related to Local Properties of Banach Spaces , 1989 .
[25] N. Tomczak-Jaegermann. Banach-Mazur distances and finite-dimensional operator ideals , 1989 .
[26] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[27] Jean Bourgain,et al. On the duality problem for entropy numbers of operators , 1989 .
[28] J. Bourgain. Bounded orthogonal systems and the Λ(p)-set problem , 1989 .
[29] M. Talagrand,et al. An “isomorphic” version of the sauer-shelah lemma and the banach-mazur distance to the cube , 1989 .
[30] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[31] Gilles Pisier,et al. A new approach to several results of V. Milman. , 1989 .
[32] D. Voiculescu. Property T and Approximation of Operators , 1990 .
[33] An exotic quasidiagonal operator , 1990 .
[34] Nicole Tomczak-Jaegermann,et al. Bounds for projection constants and 1-summing norms , 1990 .
[35] P. Sarnak. Some Applications of Modular Forms , 1990 .
[36] S. Szarek. Spaces with large distance to l∞n and random matrices , 1990 .
[37] B. Bollobás. THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .
[38] D. Voiculescu. Limit laws for Random matrices and free products , 1991 .
[39] Alexandru Nica,et al. Free random variables , 1992 .
[40] R. Chapman. SOME APPLICATIONS OF MODULAR FORMS (Cambridge Tracts in Mathematics 99) , 1992 .
[41] Alexandru Nica,et al. Free random variables : a noncommutative probability approach to free products with applications to random matrices, operator algebras, and harmonic analysis on free groups , 1992 .
[42] J. Kuelbs,et al. Metric entropy and the small ball problem for Gaussian measures , 1993 .
[43] Random Banach spaces: The limitations of the method , 1993, math/9305203.
[44] Alexander Lubotzky,et al. Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.
[45] M. Talagrand. Sections of smooth convex bodies via majorizing measures , 1995 .
[46] Dan Voiculescu,et al. Free Probability Theory: Random Matrices and von Neumann Algebras , 1995 .
[47] A. Giannopoulos. A NOTE ON THE BANACH-MAZUR DISTANCE TO THE CUBE , 1995 .
[48] M. Rudelson. Distances Between Non-symmetric Convex Bodies and the $$MM^* $$ -estimate , 1998, math/9812010.
[49] Vitali Milman,et al. Surprising Geometric Phenomena in High-Dimensional Convexity Theory , 1998 .
[50] Marek Lassak,et al. Approximation of Convex Bodies by Centrally Symmetric Bodies , 1998 .
[51] Alexander E. Litvak,et al. The Flatness Theorem for Nonsymmetric Convex Bodies via the Local Theory of Banach Spaces , 1999, Math. Oper. Res..
[52] V. Milman,et al. Institute for Mathematical Physics Entropy and Asymptotic Geometry of Non{symmetric Convex Bodies Entropy and Asymptotic Geometry of Non-symmetric Convex Bodies , 2022 .
[53] F. Hiai,et al. The semicircle law, free random variables, and entropy , 2006 .
[54] A geometric approach to duality of metric entropy , 2001 .
[55] V. Milman,et al. Chapter 17 - Euclidean Structure in Finite Dimensional Normed Spaces , 2001 .
[56] G. Schechtman,et al. Chapter 19 Finite dimensional subspaces of L p , 2001 .
[57] Xiaoming Huo,et al. Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.
[58] J. Lindenstrauss,et al. Basic Concepts in the Geometry of Banach Spaces , 2001 .
[59] Arkadi Nemirovski,et al. On Polyhedral Approximations of the Second-Order Cone , 2001, Math. Oper. Res..
[60] Jean Bourgain,et al. Chapter 5 - Λ P-sets in Analysis: Results, Problems and Related Aspects , 2001 .
[61] Alexander Koldobsky,et al. Chapter 21 - Aspects of the Isometric Theory of Banach Spaces , 2001 .
[62] Imre B'ar'any. Random points, convex bodies, lattices , 2002 .
[63] B. Maurey. Chapter 29 - Banach Spaces with Few Operators , 2003 .
[64] C. Schütt,et al. Polytopes with Vertices Chosen Randomly from the Boundary of a Convex Body , 2003 .
[65] Stanislaw J. Szarek,et al. The Knaster problem and the geometry of high-dimensional cubes , 2003 .
[66] S. Szarek,et al. On the Gram Matrices of Systems of Uniformly Bounded Functions , 2003 .
[67] G. Anderson. Integral kašin splittings , 2003 .
[68] Special orthogonal splittings of $L_1^{2k}$ , 2003 .
[69] N. Tomczak-Jaegermann,et al. Chapter 28 - Quotients of Finite-Dimensional Banach Spaces; Random Phenomena , 2003 .
[70] Z. Da. A new proof of Федоров theorem , 2003 .
[71] B. Maurey,et al. Chapter 30 - Type, Cotype and K-Convexity , 2003 .
[72] J. Zinn,et al. Chapter 27 - Probabilistic Limit Theorems in the Setting of Banach Spaces , 2003 .
[73] Roy H. Campbell,et al. Addenda and corrigenda , 1977, Acta Informatica.
[74] A. Winter,et al. Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.
[75] A. Litvak,et al. John's Decomposition in the General Case and Applications , 2004 .
[76] Andris Ambainis,et al. Small Pseudo-random Families of Matrices: Derandomizing Approximate Quantum Encryption , 2004, APPROX-RANDOM.
[77] Saturating constructions for normed spaces , 2004, math/0407233.
[78] On Convexified Packing and Entropy Duality , 2004, math/0407238.
[79] S. Artstein,et al. Duality of metric entropy , 2004 .
[80] Noga Alon,et al. Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.
[81] E. Candès,et al. Error correction via linear programming , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[82] Noga Alon,et al. Quadratic forms on graphs , 2005, STOC '05.
[83] Aicke Hinrichs,et al. The knaster problem: More counterexamples , 2005 .
[84] M. Rudelson,et al. Euclidean embeddings in spaces of finite volume ratio via random matrices , 2005 .
[85] Saturating constructions for normed spaces II , 2004, math/0407234.
[86] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[87] S. Szarek. Volume of separable states is super-doubly-exponentially small in the number of qubits , 2005 .
[88] S. Mendelson,et al. Reconstruction and subgaussian operators , 2005, math/0506239.
[89] M. Rudelson,et al. Geometric approach to error-correcting codes and reconstruction of signals , 2005, math/0502299.
[90] A. Nemirovski. Advances in convex optimization : conic programming , 2005 .
[91] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[92] E.J. Candes. Compressive Sampling , 2022 .
[93] V. Milman,et al. Logarithmic reduction of the level of randomness in some probabilistic geometric constructions , 2006 .
[94] Guillaume Aubrun,et al. Tensor products of convex sets and the volume of separable states on N qudits (10 pages) , 2005, quant-ph/0503221.
[95] Isomorphic and almost-isometric problems in high-dimensional convex geometry , 2006 .
[96] Special orthogonal splittings of L 2 k 1 , 2008 .