Convexity, complexity, and high dimensions

We discuss metric, algorithmic and geometric issues related to broadly understood complexity of high dimensional convex sets. The specific topics we bring up include metric entropy and its duality, derandomization of constructions of normed spaces or of convex bodies, and different fundamental questions related to geometric diversity of such bodies, as measured by various isomorphic (as opposed to isometric) invariants.

[1]  E. Asplund Comparison Between Plane Symmetric Convex Bodies and Parallelograms. , 1960 .

[2]  M. Murty Ramanujan Graphs , 1965 .

[3]  R. Dudley The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .

[4]  A. Pietsch Theorie der Operatorenideale (Zusammenfassung) , 1972 .

[5]  G. Pisier,et al.  Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach , 1976 .

[6]  D. R. Lewis Finite dimensional subspaces of $L_{p}$ , 1978 .

[7]  Nicole Tomczak-Jaegermann,et al.  On nearly euclidean decomposition for some classes of Banach spaces , 1980 .

[8]  G. Pisier,et al.  Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert , 1980 .

[9]  G. Pisier Remarques sur un résultat non publié de B. Maurey , 1981 .

[10]  Gilles Pisier,et al.  Holomorphic semi-groups and the geometry of Banach spaces , 1982 .

[11]  I. Miheev,et al.  Trigonometric series with gaps , 1983 .

[12]  S. Szarek The finite dimensional basis problem with an appendix on nets of Grassmann manifolds , 1983 .

[13]  G. Pisier,et al.  Characterizations of almost surely continuousp-stable random Fourier series and strongly stationary processes , 1984 .

[14]  C. Schütt Entropy numbers of diagonal operators between symmetric Banach spaces , 1984 .

[15]  V. Milman,et al.  Almost Euclidean quotient spaces of subspaces of a finite-dimensional normed space , 1985 .

[16]  How well can an $n \times n$ matrix be approximated by reducible ones? , 1986 .

[17]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[18]  C. Schütt,et al.  Geometric and probabilistic estimates for entropy and approximation numbers of operators , 1987 .

[19]  Dualité des nombres d'entropie pour des opérateurs à valeurs dans un espace de Hilbert , 1987 .

[20]  On the covering numbers of convex bodies , 1987 .

[21]  János Komlós,et al.  Deterministic simulation in LOGSPACE , 1987, STOC.

[22]  V. Milman,et al.  A few observations on the connections between local theory and some other fields , 1988 .

[23]  Jean Bourgain,et al.  The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization , 1988 .

[24]  Alain Pajor,et al.  Volume Ratio and Other s-Numbers of Operators Related to Local Properties of Banach Spaces , 1989 .

[25]  N. Tomczak-Jaegermann Banach-Mazur distances and finite-dimensional operator ideals , 1989 .

[26]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[27]  Jean Bourgain,et al.  On the duality problem for entropy numbers of operators , 1989 .

[28]  J. Bourgain Bounded orthogonal systems and the Λ(p)-set problem , 1989 .

[29]  M. Talagrand,et al.  An “isomorphic” version of the sauer-shelah lemma and the banach-mazur distance to the cube , 1989 .

[30]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[31]  Gilles Pisier,et al.  A new approach to several results of V. Milman. , 1989 .

[32]  D. Voiculescu Property T and Approximation of Operators , 1990 .

[33]  An exotic quasidiagonal operator , 1990 .

[34]  Nicole Tomczak-Jaegermann,et al.  Bounds for projection constants and 1-summing norms , 1990 .

[35]  P. Sarnak Some Applications of Modular Forms , 1990 .

[36]  S. Szarek Spaces with large distance to l∞n and random matrices , 1990 .

[37]  B. Bollobás THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .

[38]  D. Voiculescu Limit laws for Random matrices and free products , 1991 .

[39]  Alexandru Nica,et al.  Free random variables , 1992 .

[40]  R. Chapman SOME APPLICATIONS OF MODULAR FORMS (Cambridge Tracts in Mathematics 99) , 1992 .

[41]  Alexandru Nica,et al.  Free random variables : a noncommutative probability approach to free products with applications to random matrices, operator algebras, and harmonic analysis on free groups , 1992 .

[42]  J. Kuelbs,et al.  Metric entropy and the small ball problem for Gaussian measures , 1993 .

[43]  Random Banach spaces: The limitations of the method , 1993, math/9305203.

[44]  Alexander Lubotzky,et al.  Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.

[45]  M. Talagrand Sections of smooth convex bodies via majorizing measures , 1995 .

[46]  Dan Voiculescu,et al.  Free Probability Theory: Random Matrices and von Neumann Algebras , 1995 .

[47]  A. Giannopoulos A NOTE ON THE BANACH-MAZUR DISTANCE TO THE CUBE , 1995 .

[48]  M. Rudelson Distances Between Non-symmetric Convex Bodies and the $$MM^* $$ -estimate , 1998, math/9812010.

[49]  Vitali Milman,et al.  Surprising Geometric Phenomena in High-Dimensional Convexity Theory , 1998 .

[50]  Marek Lassak,et al.  Approximation of Convex Bodies by Centrally Symmetric Bodies , 1998 .

[51]  Alexander E. Litvak,et al.  The Flatness Theorem for Nonsymmetric Convex Bodies via the Local Theory of Banach Spaces , 1999, Math. Oper. Res..

[52]  V. Milman,et al.  Institute for Mathematical Physics Entropy and Asymptotic Geometry of Non{symmetric Convex Bodies Entropy and Asymptotic Geometry of Non-symmetric Convex Bodies , 2022 .

[53]  F. Hiai,et al.  The semicircle law, free random variables, and entropy , 2006 .

[54]  A geometric approach to duality of metric entropy , 2001 .

[55]  V. Milman,et al.  Chapter 17 - Euclidean Structure in Finite Dimensional Normed Spaces , 2001 .

[56]  G. Schechtman,et al.  Chapter 19 Finite dimensional subspaces of L p , 2001 .

[57]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[58]  J. Lindenstrauss,et al.  Basic Concepts in the Geometry of Banach Spaces , 2001 .

[59]  Arkadi Nemirovski,et al.  On Polyhedral Approximations of the Second-Order Cone , 2001, Math. Oper. Res..

[60]  Jean Bourgain,et al.  Chapter 5 - Λ P-sets in Analysis: Results, Problems and Related Aspects , 2001 .

[61]  Alexander Koldobsky,et al.  Chapter 21 - Aspects of the Isometric Theory of Banach Spaces , 2001 .

[62]  Imre B'ar'any Random points, convex bodies, lattices , 2002 .

[63]  B. Maurey Chapter 29 - Banach Spaces with Few Operators , 2003 .

[64]  C. Schütt,et al.  Polytopes with Vertices Chosen Randomly from the Boundary of a Convex Body , 2003 .

[65]  Stanislaw J. Szarek,et al.  The Knaster problem and the geometry of high-dimensional cubes , 2003 .

[66]  S. Szarek,et al.  On the Gram Matrices of Systems of Uniformly Bounded Functions , 2003 .

[67]  G. Anderson Integral kašin splittings , 2003 .

[68]  Special orthogonal splittings of $L_1^{2k}$ , 2003 .

[69]  N. Tomczak-Jaegermann,et al.  Chapter 28 - Quotients of Finite-Dimensional Banach Spaces; Random Phenomena , 2003 .

[70]  Z. Da A new proof of Федоров theorem , 2003 .

[71]  B. Maurey,et al.  Chapter 30 - Type, Cotype and K-Convexity , 2003 .

[72]  J. Zinn,et al.  Chapter 27 - Probabilistic Limit Theorems in the Setting of Banach Spaces , 2003 .

[73]  Roy H. Campbell,et al.  Addenda and corrigenda , 1977, Acta Informatica.

[74]  A. Winter,et al.  Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.

[75]  A. Litvak,et al.  John's Decomposition in the General Case and Applications , 2004 .

[76]  Andris Ambainis,et al.  Small Pseudo-random Families of Matrices: Derandomizing Approximate Quantum Encryption , 2004, APPROX-RANDOM.

[77]  Saturating constructions for normed spaces , 2004, math/0407233.

[78]  On Convexified Packing and Entropy Duality , 2004, math/0407238.

[79]  S. Artstein,et al.  Duality of metric entropy , 2004 .

[80]  Noga Alon,et al.  Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.

[81]  E. Candès,et al.  Error correction via linear programming , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[82]  Noga Alon,et al.  Quadratic forms on graphs , 2005, STOC '05.

[83]  Aicke Hinrichs,et al.  The knaster problem: More counterexamples , 2005 .

[84]  M. Rudelson,et al.  Euclidean embeddings in spaces of finite volume ratio via random matrices , 2005 .

[85]  Saturating constructions for normed spaces II , 2004, math/0407234.

[86]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[87]  S. Szarek Volume of separable states is super-doubly-exponentially small in the number of qubits , 2005 .

[88]  S. Mendelson,et al.  Reconstruction and subgaussian operators , 2005, math/0506239.

[89]  M. Rudelson,et al.  Geometric approach to error-correcting codes and reconstruction of signals , 2005, math/0502299.

[90]  A. Nemirovski Advances in convex optimization : conic programming , 2005 .

[91]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[92]  E.J. Candes Compressive Sampling , 2022 .

[93]  V. Milman,et al.  Logarithmic reduction of the level of randomness in some probabilistic geometric constructions , 2006 .

[94]  Guillaume Aubrun,et al.  Tensor products of convex sets and the volume of separable states on N qudits (10 pages) , 2005, quant-ph/0503221.

[95]  Isomorphic and almost-isometric problems in high-dimensional convex geometry , 2006 .

[96]  Special orthogonal splittings of L 2 k 1 , 2008 .