Cored Hypergraphs, Power Hypergraphs and Their Laplacian H-Eigenvalues
暂无分享,去创建一个
[1] H. L. Abbott,et al. Intersection Theorems for Systems of Sets , 1972, J. Comb. Theory, Ser. A.
[2] Claude Berge,et al. Hypergraphs - combinatorics of finite sets , 1989, North-Holland mathematical library.
[3] V. Sunder,et al. The Laplacian spectrum of a graph , 1990 .
[4] Russell Merris,et al. The Laplacian Spectrum of a Graph II , 1994, SIAM J. Discret. Math..
[5] Dragan Stevanović. Bounding the largest eigenvalue of trees in terms of the largest vertex degree , 2003 .
[6] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[7] Daniela Kühn,et al. Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree , 2006, J. Comb. Theory, Ser. B.
[8] Marcello Pelillo,et al. A generalization of the Motzkin–Straus theorem to hypergraphs , 2009, Optim. Lett..
[9] Samuel,et al. A Game-Theoretic Framework for Similarity-Based Data Clustering , 2009 .
[10] Tamás Terlaky,et al. New stopping criteria for detecting infeasibility in conic optimization , 2009, Optim. Lett..
[11] Qingzhi Yang,et al. Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..
[12] Xiaodong Zhang. The Laplacian eigenvalues of graphs: a survey , 2011, 1111.2897.
[13] Willem H. Haemers,et al. Spectra of Graphs , 2011 .
[14] Joshua N. Cooper,et al. Spectra of Uniform Hypergraphs , 2011, 1106.4856.
[15] Daniela Kühn,et al. Loose Hamilton cycles in hypergraphs , 2008, Discret. Math..
[16] L. Qi. Symmetric nonnegative tensors and copositive tensors , 2012, 1211.5642.
[17] Liqun Qi,et al. Algebraic connectivity of an even uniform hypergraph , 2012, J. Comb. Optim..
[18] Xing Peng. The Ramsey number of generalized loose paths in uniform Hypergrpahs , 2013 .
[19] Jinshan Xie,et al. H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph , 2013 .
[20] L. Qi. H$^+$-Eigenvalues of Laplacian and Signless Laplacian Tensors , 2013, 1303.2186.
[21] Gholam Reza Omidi,et al. The Ramsey Number of Loose Paths in 3-Uniform Hypergraphs , 2013, Electron. J. Comb..
[22] Vladimir Nikiforov. An analytic theory of extremal hypergraph problems , 2013 .
[23] Liqun Qi,et al. Some new trace formulas of tensors with applications in spectral hypergraph theory , 2013, 1307.5690.
[24] Jinshan Xie,et al. On the Z‐eigenvalues of the signless Laplacian tensor for an even uniform hypergraph , 2013, Numer. Linear Algebra Appl..
[25] Chen Ling,et al. On determinants and eigenvalue theory of tensors , 2013, J. Symb. Comput..
[26] L. Qi,et al. The Eigenvectors of the Zero Laplacian and Signless Laplacian Eigenvalues of a Uniform Hypergraph , 2013, 1303.4048.
[27] L. Qi,et al. The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph , 2013, 1304.1315.
[28] Guoyin Li,et al. The Z‐eigenvalues of a symmetric tensor and its application to spectral hypergraph theory , 2013, Numer. Linear Algebra Appl..
[29] Liqun Qi,et al. The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph , 2013, Discret. Appl. Math..
[30] Tan Zhang,et al. On Spectral Hypergraph Theory of the Adjacency Tensor , 2012, Graphs Comb..
[31] Liqun Qi,et al. The Laplacian of a uniform hypergraph , 2015, J. Comb. Optim..
[32] U. Feige,et al. Spectral Graph Theory , 2015 .