Moment Component Analysis: An Illustration With International Stock Markets

We describe a statistical technique, which we call Moment Component Analysis (MCA), that extends principal component analysis (PCA) to higher co-moments such as co-skewness and co-kurtosis. This method allows us to identify the factors that drive co-skewness and co-kurtosis structures across a large set of series. We illustrate MCA using 44 international stock markets sampled at weekly frequency from 1994 to 2014. We find that both the co-skewness and the co-kurtosis structures can be summarized with a small number of factors. Using a rolling window approach, we show that these co-moments convey useful information about market returns, for systemic risk measurement and portfolio allocation, complementary to the information extracted from a standard PCA or from an independent component analysis.

[1]  Robert F. Dittmar Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from the Cross Section of Equity Returns , 2002 .

[2]  Sébastien Page,et al.  Principal Components as a Measure of Systemic Risk , 2010, The Journal of Portfolio Management.

[3]  Gustavo Athayde and Renato Flores Finding a maximum skewness portfolio , 2001 .

[4]  Robert Weinstock,et al.  The Inelastic Scattering of Slow Neutrons. , 1943 .

[5]  Kristiaan Kerstens,et al.  Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach , 2007, Manag. Sci..

[6]  佐藤 保,et al.  Principal Components , 2021, Encyclopedic Dictionary of Archaeology.

[7]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[8]  Maurry Tamarkin,et al.  On Diversification Given Asymmetry in Returns , 1981 .

[9]  Berkant Savas,et al.  A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor , 2009, SIAM J. Matrix Anal. Appl..

[10]  I. Johnstone On the distribution of the largest principal component , 2000 .

[11]  Carmen M. Reinhart,et al.  Financial Markets in Times of Stress , 2001 .

[12]  A. Lo,et al.  Econometric Measures of Connectedness and Systemic Risk in the Finance and Insurance Sectors , 2011 .

[13]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[14]  Lek-Heng Lim,et al.  PRINCIPAL CUMULANT COMPONENT ANALYSIS , 2009 .

[15]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[16]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[17]  Pierre Comon,et al.  Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..

[18]  Andrew Ang,et al.  Asymmetric Correlations of Equity Portfolios , 2001 .

[19]  L. Lathauwer,et al.  Signal Processing based on Multilinear Algebra , 1997 .

[20]  Ganesh R. Naik,et al.  Introduction: Independent Component Analysis , 2012 .

[21]  Andrew Ang,et al.  Downside Risk , 2004 .

[22]  John C. Liechty,et al.  Portfolio selection with higher moments , 2004 .

[23]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[24]  Lionel Martellini,et al.  Improved Estimates of Higher-Order Comoments and Implications for Portfolio Selection , 2010 .

[25]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[26]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[27]  I. Jolliffe Principal Component Analysis , 2002 .

[28]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[29]  Philip A. Horvath,et al.  On The Direction of Preference for Moments of Higher Order Than The Variance , 1980 .

[30]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[31]  E. Oja,et al.  Independent Component Analysis , 2013 .

[32]  M. Rockinger,et al.  Optimal Portfolio Allocation Under Higher Moments , 2004 .

[33]  R. Flôres,et al.  Finding a maximum skewness portfolio--a general solution to three-moments portfolio choice , 2004 .

[34]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[35]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[36]  Eric Jondeau,et al.  The Impact of Shocks on Higher Moments , 2008 .

[37]  M. Rubinstein. The Fundamental Theorem of Parameter-Preference Security Valuation , 1973, Journal of Financial and Quantitative Analysis.

[38]  Roland Badeau,et al.  Fast Multilinear Singular Value Decomposition for Structured Tensors , 2008, SIAM J. Matrix Anal. Appl..

[39]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[40]  M. Avellaneda,et al.  Statistical Arbitrage in the U.S. Equities Market , 2008 .

[41]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[42]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[43]  Campbell R. Harvey,et al.  Conditional Skewness in Asset Pricing Tests , 1999 .

[44]  V. Plerou,et al.  Random matrix approach to cross correlations in financial data. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.